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CHEPTER 0

INTRODUCTION OF GRAPH

0.1HISTORY OF GRAPH THEORY

in 1736,LEONHARD EULER wrote a paper on the seven bridges of Kénigsberg which is
regarded as the first paper history of GRAPH THEORY.A Graph in this context is made up of
vertices ,nodes or points which are connected by edges, arcs or lines.

Graph theory is now a major toal in mathematical research, electrical engineering,
computer programming and networking, business administrating,sociology.economics,
marketing and communications and so on...

There are many research topics in graph theory. Some of major themes in graph theory are
Graph coloring , Spanning tree , Planner graphs , Networks , Eulerian tours , Hamiltonian cycle ,
Matching , Domination theory and * GRAPH LABELING ”,

0.2 APPLICATION OF GRAPH

Because of its inherent simplicity, graph theory has a very wide range of application on
engineering, in physical, social, and bioclogical sciences, in linguistics, and in numerous other
areas. A graph can be used to represent almost any physical situation involving discrete objects
and a relationship among them. The following are four examples from hundreds of such
applications.

(1) Kdnigsberg bridge problem :-

The Kénigsberg bridge problem is the best known example in the graph theory.lt was
solved by LEONHARD EULER in 1736 by mean of graph.

Two Islands C and D formed by the PREGEL RIVER in Kdnigsberg in Russia. Where C and D are
connected to each other and to the bank A and B with seven bridge as Shown in figure

s P L, S R
I e

FIG. 0.1. Kdnigsberg bridge problem

[1]
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The problem was to start at any of the four land area of the city A, B, C or D and walk over each
of the seven bridges exactly once and return to starting point.

Euler represent this situation by mean of a graph as shown in figure, The vertices represent the
land area and edges represent the land area and edges represent the bridge.

(A)

(B)

FIG. 0.2,

MNow looking at the graph of Kdénigsberg bridge problem,we find that not all its vertices
are of even degree,

It is not an Euler graph.

It is not possible to walk over each of 7 bridges exactly once and return to the starting point.
(2) Utilities Problem
(3) Electrical Network Problem

(4) Seating Problem

2]
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CHEPTER1

HISTORY OF GRAPH LABELING
1.1 HISTORY

Graph labeling is one of the fascinating areas of graph theory with wide ranging
applications. Graph Labeling was first introduced in the 1960's.Most popular graph labeling
trace their origin to one introduced by Alex Rosa in 1967. A graph labeling is an assignment of
integers to the vertices or the edges, or both, subject to certain conditions. If the domain is the
set of vertices we speak about the vertex labeling. If the domain is the set of edges, then the
labeling is called the edge labeling. If the labels are assigned to the vertices and also to the
edges of a graph, such a labeling is called total.

1.2 DEFINITION AND EXAMPLE
DEFINITION

A "GRAPH LABELING" is an assignment of integers to the vertices or edges or both
subject to certain condition.

EXAMPLE

a
FIG.1.2.1.

1.3 Types of graph labeling :-
There are so many types of graph labeling like...

1) Variation of Cordial labeling :-

o Cordial labeling

« Divisor cordial labeling

« Square divisor cordial labeling
* Product cordial labeling

s Edge product cordial labeling

[3]
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2) Variation of Prime labeling :-

Prime labeling

Vertex prime labeling

Prime cordial labeling
Coprime labeling
Neighborhood prime labeling

& & & B8

3) Variation of Harmonius labeling :-

* Harmonius labeling

* Sequentional harmonius labeling
* Odd harmonius labeling

* Even harmonius labeling

» Strongly c- harmonius labeling

4) Variation of Graceful labeling :-

Graceful labeling

a graceful labeling

v graceful labeling
Harmonius graceful labeling
« Odd graceful labeling

5) Variation of Antimagic type labeling :-

s Antimagic labeling

(a,d) - Antimagic labeling

{a,d) - Antimagic total labeling
Face Antimagic labeling

Product Antimagic labeling

d- Antimagic labeling of type (1,1,1)

= & & @

6) Variation of Divisor labeling :-
s Planer zero divisor graph

& Zero divisor graph labeling
o Modular multiplicative divisor labeling

[4]
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CHAPTER2

CORDIAL GRAPH LALELING
2.1 DEFINITION AND EXAMPLE

The concept of cordial graph labeling was introduced by I.CAHIT in 1996,
DEFINITION

_ Let mapping f:V(G) = {0,1} is binary vertex labeling of a graph G is called cordial
labeling if |v;(0) — vy(1)| < 1and |e,(0) — ep(1)] < 1. Agraph G is cordial if it admits cordial
labeling.

EXAMPLE

A cordial labeling of helm Hj is shown in below figure -1.

1 1

FIG.2.1.1. cordial labeling of helm Hy

The cordial tree , graceful tree and harmonius tree related as follows.

Any graceful tree is cordial.

Any harmonius tree is cordial.

The cycle C, is graceful and cordial but not harmonius,

Cs s harmonius and cordial but not cordial.

+ Complete graph Kg is nither harmonius ,graceful and cordial,

(5]
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2.2 KNOWN RESULTS

Cahit has prove that,

Every tree Is cordial.

Complete graph K, is cordial if and only if n< 3.
Complete bipartite graph K,,, ,,are cordial for all m and n.
Wheels W,=C,+K, are cordial if and only If n 23(mod4).
All fansF, = R, +K, are cordial.

Every path is cordial.

Helms, closed helms and generalized helms are cordial,

Flower graph (graphs obtained by joining the vertices of degree one of a helm to the
central vertex) is cordial.

9. Every broom graph is cordial.
10. cordial labeling for the splitting graph of some standard graphs.

R

2.3.Cordial labeling for different types of graphs
2.3.1. Cordial labeling of snake related graphs :-
DEFINITION

An alternate quadrilateral snake A (Q5,) is obtained from a pathuy, us, ..., U, by joining
Uy, Uy to new vertices vy, wyrespectively and then joining vyandw;. That is every alternate edge
of path is replaced by C,.

EXAMPLE
oy M 4 iy b 'y vy iy
1 1 1 1 1 1]
0 0 1 0 0 0 1 0
1y Hg iy Uy iy L sz Ug

FIG.2.3.1.2. Cordial labeling of A (Q5,)

[€]
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2.3.2.Cordial labeling of splitting graphs :-
DEFINITION

Let G = (V,E) be a graph with V = 5, U 5§, U ..U §, U T where each 5, is the set of
vertices having at least two elements and having same degree and
£

T=w..Us.-

The degree splitting graph of G denoted by D5(G) is obtained from G by adding vertices
Wi, Wy, ..., W, and joining W) to each vertices of 5,(1 < i < ©).

EXAMPLE

D5(F,) admits cordial labling . The cordial labeling of DS{Ps) is as shown in below figure.

!I-I LLT]

(=]
=
-
—

i

FIG.2.3.2.1. Cordial labeling of DS(P, )

2.3.3. Cordial graph labeling for Broom graph :-
DEFINITION

Broom graph By, 4 is a graph of n vertices which have path P with d vertices and {n-d)
pendent vertices all of these being adjacent to either the origin u or the terminus V
of the path P.

Now cordial labeling of broom graph.

[7]
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The following broom graph B, has cordial labeling.

Here n=10 and d=6&
o I".F{I} = l""‘lr2 =5
i UI{D} = njlrz = 5
= |y (1) = v (0)] =0

And ef(1)=T/, =5
ef(0)=""2/,=4

= lef(1)—e;(0)| =1
Hence the graph is cordial.

EXAMPLE

=9 0
o

FIG.2.3.3.2. Cordial labeling of By 4

2.3.4. Cordial graph labeling for Flower graph :-

DEFINITION
The Flower graph F,is the graph obtained from the helm by attaching each
pendent edge vertex to the centre vertex of the Wheel(W], ).

Let Fbe the flower graph with n vertices. Let u be the central vertex of F,. The
vertex u is called the hub vertex of the flower graph. Let uy, uy, us,..., us.y, usbe the
vertices in the cycle of the flower. Let vy v; V3, .., Vo1, Vo e the end vertices of

flower.

(8]
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EXAMPLE

FIG.2.3.4.2. Cordial labeling of Fi5

2.3.5. Cordial graph labeling for Fan releted graph :-

DEFINITION

The fan f,(n = 2) is obtained by joining all vertices of B, (Path of n vertices) to a
further vertex called the center and contains n+ 1 vertex and 2n-1 edges.

e fo =B+ K.

The graph obtained by joining two coples of fan graph f, by a part of arbitrary
length is admits cordial labeling.

EXAMPLE

The following figure shows the cordial labeling of graph G obtained by joining
two copies of fan graph [z by a pathPs.

0 1 1 o

FIG.2.3,5.1. Cordial labeling of f;

(2]
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2.3.6. Cordial graph labeling for Ladder graph :-
DEFINITION

The ladder graph L,, is a planar undirected graph with 2n vertices and 3n-2
edges. It Is obtained as the cartesian product of two graphs,one of which has only one
edge: L,; = B, % P, .where nis the number of rings in the ladder.

EXAMPLE

1 0 0 0
FiG.2.3.6.1. Cordial labeling of L,

[10]
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CHAPTER 3
PRIME LABELING
3.1 DEFINITION AND EXAMPLE

The notion of prime labeling originated with Entringer and was considered in a
paper by Tout, Dabboucy and Howalla .

DEFINITION

Let G= G(V,E} be a graph. A bijection £ V{1,2,3,......|v|} is called prime labelling if for
each e={uv} belong to E, we have GCD (f{u),flv)}=1. A graph that admits a prime
labeling is called a prime graph.

Example

FIG.3.1.1. prime labeling of Ty,

3.2 KNOWN RESULTS

1. Path B, on n vertices is prime graph.

2. Cycle C,; on n vertices is prime graph.

3. Wheel W, is a prime graph if and only if n is even,

4. Complete graph K, does not have a prime |abeling forn = 4.

5. The graph G obtained by identifying any two vertices of K, , is a prime graph.
6. Every book graph have prime labeling.

7. The gear graph Gy, .,n = 3 is prime.

8. The ladder graph L, = P; x F,has a prime labeling for any integern = 2.

9. The helm H is prime.

10. Entringer conjectured that every tree is prime forn = 3,

[11]
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3.3. Prime labeling for different types of graphs :-

3.3.1. Prime labeling of Book graph:-
DEFINITION

A book graph may be any of servel kinds of graph formed by multiple cycles
sharing an edge.

Let V(B ) = {ug, uy, uy, ..., Uy, Vg, ¥y, V3, oo, Vi ).
Define [V = {1,2,...,|V]) as

flug) =1, [(w) =2,

Fori=1,2,.m
F(u) =20 + 1)And
flu)=2i+ 1.

Clearly f is a prime labeling for B,,.

Example

(2 T)

FIG.3.3.1.1. prime labeling of B¢

[12]
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3.3.2. Prime labeling of flower graph:-
DEFINITION

The Flawer graph FI,, is the graph obtained from the helm by attaching each
pendent edge vertex to the centre vertex of the Wheel(W, ).

Let V be the apex vertex, iy, ¥3, ..., ¥y, be the vertices of degree 4 and
Uy, Uz, ..., U, be the vertices of degree 2 ofFl,,.

Then |V(FL, )|= 2n+1 and | E(FL, }|= 4n.

We define a prime labelling f: V-3{1,2,3.......} given by
fiv) =1

flw,) = 1+ 2i, 1sign
flu;) = 2i, 1<i<n.

There exists a bijection f: v-=2{1,2,3,.....,|V|} such that for each e={u,v} belongs to E,
we have

GCD (f{u),fiv)}=1.
Hence the flower Fl,, admits prime labelling.

Example

10

FIG.3.3.2.1. prime labeling of Fl,q

[13]
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3.3.3. Prime labeling of gear graph :-

DEFINITION

The gear graph G,, is a spanning subgraph of W, obtained by deleting alternate
spokes and hence is prime.

The geargraph G, .n = 3 is prime.

Example’

FIG.2.3.3.1. prime labeling of G,,

3.3.4. Prime labeling of friendship graph :-
DEFINITION

A friendship graph F, is a graph which consists of n triangles with a common
vertex.

Let F,be the friendship graph with n copies of cycle C3. Let v' be the apex vertex,
vy, ¥, ..., V3, be the other vertices and e,, €3, ..., €3, be the edges of F,.

Define a prime labelling f: V={1,2,3,.....[V|} given by
fir')=1 fly)=lforl=si<n

There exists a bijection f: V{1,2,3,.....,|V|} such that for each e={u,v} belong to E, we
have GCD (f{u),flv))=1.

Hence the friendship graph admits a prime labelling

[14]

e
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3.3.3. Prime labeling of gear graph :-

DEFINITION

The gear graph Gy, Is a spanning subgraph of W, obtained by deleting alternate
spokes and hence is prime.,

The gear graph G,, ,n = 3 is prime.

Example’

11 4

FIG.3.3.3.1. prime labeling of G,

3.3.4. Prime labeling of friendship graph :-
DEFINITION

A friendship graph F; is a graph which consists of n triangles with a comman
vertex,

Let F, be the friendship graph with n copies of cycle Cy. Let v' be the apex vertex,
vy, V3, ..., Vzy, D@ the other vertices and e,, e, ..., €3, be the edges ofF,,,

Define a prime labelling f: V={1,2,3,.....|V|} given by
flr'y=1 flry)=i+lforl=i=<n.

There exists a bijection f: V-2{1,2,3,.....,|V|} such that for each e={u,v} belong to E, we
have GCD (flu), fiv))=1.

Hence the friendship graph admits a prime labelling

[14]

-
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Example

FIG.3.3.4 .1. prime labeling of Fy3

3.3.5. Prime labeling of helm graph :-
DEFINITION

The helm H,, is a graph obtained from whee! by attaching a pendent vertex at
each vertex of the n- cycle .

The helm H, has Zn+1 vertices and 3n edges. Let w be the central vertex of
Hyand u,, ug, ..., Uybe the vertices of the wheel's rim. Let ¥; be the pendant vertex
adjacent to u;, where u; is adjacent touy,, 1< i=n. Thatis, V= {w,u, vl =

1.2,...1n}.

pefine f: V = {1,.2,3 ...2n + 1} as
fiw) =1, flu) =2, flv) =3 and
fori=1,23...n,

fquJ = 2Zi + l.f{'l?i} = 21,
Then {fu) | i=1,23,...n}={2, 57.3..., 2Zn+1},

{flv)li = 1.2,..., n}={3,4,6,8101...,2n}and f is injective,
Mow,

GCD (f(up) flugy))=1fori=1,2,....n-1;

GCD (f(uy). f(u )) GED(2n+1, 2) =1.

Also, GCD{f{w), flu,)) = GCD(1, flu)) = 1 and

GCD{f(w,), flw)) =GCD(2i+1, 2i)=1fori=1,2,....n

Hence f is a prime labeling for Hj,.

(15]
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Example

FIG.3.3.5.1. prime labeling of Hy,

3.3.6. Prime |labeling of Ladder graph :-
DEFINITION

The ladder L, (n = 2} Is the product graph P; x P, which contains 2n vertices
and 3n - 2 edges.

The ladder graph L,, = P, x P, has a prime labeling for any integern = 2.
Ly = P53 % B,admits a prime labeling if 2n+1 is prime.

Let I1={1,2, 3, ..., n}Let u; and v; , | €1, be the vertices of the first row and the
second row respectively.

Define flu;) =iand flv))=2n+1-i,iEI.
Hence fis a prime labeling for L.

Example

1 2 3 4 g 6 7 g

16 15 14 13 12 11 10 g

FIG.3.3.6.1, prime labeling of Lg

[16]
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CHAPTER 4
GRACEFUL LABELING

4.1 DEFINITION AND EXAMPLE
DEFINITION

A function f is called graceful labeling of a graph G with order p and
size g if f:V(G) = {1,2,..., g}is injective and the induced function f*: E(G) —
{1,2,..,q)defined as f* (e = uv) = |f(u) = f(v)|is bijective. The graph which admits
graceful labeling is called a graceful graph.

Example

wi@
— @

FIG.4.1.1.

The famous Ringel - Kotzig tree conjecture ( All trees are graceful) as stated in and many
illustrious works on graceful graph brought a tide of different ways of labeling of graph
elements such as odd graceful labeling , harmonious labeling etc. Grahan an Sloane introduced
harmonious labeling during their study on modular versions of additive bases problems

stermming from error correcting codes.

4.2. KNOWN RESULTS
1) The complete graph Kyis not gracefulfor n 2 5.

2) All wheels W, are gracefulfor n = 3.

3) All trees are graceful,

4) All caterpillars are graceful.

[17] ’J
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5) Every path is graceful.

6) Allfan f,_, are graceful.

7) Gracefulness of union of two path graphs with grid graph and complete bipartite
graph.

8) All cycle are graceful exceptCs and C,.

9) & =< Kpyn,ioiKmn, > the join sum of complete bipartite graphs is graceful
] WHEI-E mj _:n'j_ i ....mr,ﬂt E H-

10) Every A, —snake for n = 2or 3 (mod 4) is almost graceful.

4.3. Graceful labeling for different types of graphs :-

4.3.1.Graceful labeling of cycle graph :-
DEFINITION

For a cycle C,,, each vertices of Cyis replace by connected graph
Gy, Gz, ... G5 known as cycle of graphs and it is denoted by C(G,, Gy, ... G,). If we
replace each vertices by a graph Gie. &y = G,6; = G, ... G, = G, such cycle of
graphs is denoted by C,(G).
Cycle of cycles C,(C,). t =0 (mod 2), n = 0 (mod 4) is graceful graph.

EXAMPLE:-

£5and its graceful labeling shown in following figure.

FIG.4.3.1.1.graceful labeling of C,

[18]
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4.3.2, Graceful labeling of snake graph :-
DEFINITION

An alternate triangular snake A(Tn) is obtained from a path 1y Uz, ..., Uy by joining
u; and . (alternately) to a new vertex v. That is every alternate edge of path is replaced by
€3

Example

14 12 17 T 18 3 12

2 " 22 0 0 1 18 5

FIG.4.3.2.1.graceful labeling of A(Tn)

4.3.3. Graceful labeling of friendship graph :-
DEFINITION

A friendship graph F, is a graph which consists of n triangles with a common
wvartex.,

A graph Gof size qis odd-graceful, if there is an injection @ from Vgl {0,1,2,

- £0-1} such that, when each edge xyis assigned the label or weight |@ (x I=2(y).
the resulting edge labels are {1, 3, 5, ..., 2g-1).

solairaju and Muruganantham proved that the revised friendship graphs
F(kCy), F(kCg) and F(2KkC,) are all even vertex graceful, where kis any positive
integer.

A revised friendship graph F{kC,),n = 3 is defined as a con

y nected graph
containing kcopies of C, with a vertex in comman, .

[13]
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EXAMPLE

The revised friendship graph F(kC, )is odd graceful, where kis any positive integer,

L i LR m,

FIG.4.2.3.1.graceful labeling of F(kC,)

4.3.4.Graceful labeling of wheel graph :-
DEFINITION

The Wheel graph Wy, (n 2 3) Isa n + 1-vertices graph obtained By connecting
all the vertices {vy, 13, . . ., ¥y} of £, to the center vertex v, now the vertex set is V
(Wyn)={v, vy, va, ..., V). Here v be the center vertex and other vertices vy, vy, .
1, be on the rim and the edge set is E{W, ) = {e;. €5, €3, . . . &5, €441,

& o

P Ei'l'l]‘
Example

{v}- Center vertex
{vy, v3, ..., Uyl vertices on the rim

[20]
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FIG.4.3.4.1.graceful labeling of W, ¢

4.3.5.Graceful labeling of banana tree graph :-

DEFINITION

A banana tree consists of a vertex v joined to one leaf of any number of stars. An
example of graceful labeling of banana tree has been illustrated in the figure .

Let (2K, 4, ..,2K; » ) be the tree obtained by adding a vertex to the union of two copies
of each of K 4, ..., Ky 4 @and joining it to a leaf of each star. The banana tree obtained in this way
is interlaced and therefore graceful. Chen, Lu, and Yeh conjectured in that all banana trees are

graceful.
Bhat-Nayak and Deshmukh have constructed three new families of graceful banana

Example

FIG.4.3.5.1.graceful labeling of Ty,

[21)
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trees using an algorithmic labeling proof. Extending the results of Chen, Lu and Yeh
they have shown that the following are graceful,

L (Ko Ky (o + DK K pgqi oo Ky o where 0 S @ <t
2‘ 1EIF|:Ili.l' "'l'HH'LI“-I [H + E}H}Ip EH!J.'.F ...,EHL“ :l‘. Hl'hf-'f'[-' ﬂ 5 <t
3. (R Mig oos i)

Moreover, Murugan and Arumugam showed that any banana tree where all the stars have the
same size Is graceful by constructing a graceful labeling of these banana trees. Note that a
banana tree, in which all the stars have the same size Is also a symmetrical tree, so, it is also
graceful

4.3.6.Graceful labeling of complete graph :-
DEFINITION

A simple graph in which there exist an edges between every pair of vertices is called
complete graph.

A vertex labeling f of a graph G Is called graceful if fis an injective mapping from the
set of vertices to the set of integers {0,1,...| E{G)| }such that the induced mapping
flxy) = |f(x) = fQy)l, for every xy € E(G),

assigns different labels to different edges of G, The difference |f(x) — f(y)|is
called the weight of the edge xy. A graph G is called graceful, If G admits a graceful
labeling.
i.e, that the complete graph K, ;15 decomposable into 2n+1 sub-graphs
that are all isomorphic to a given tree of size n.

Example

FIG.4.3.6.1.graceful labeling of K,

[22]
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CHAPTERS
HARMONIOUS LABELING

5.1 DEFINITION AND EXAMPLE
DEFINITION

A Graph G Is sald to be harmonious If there exist an Injection [ V() = Z such that the
induced function f*: E(G) = Z,defined by f*(uv) = (f(u) + f(#))(mod q)is a bljection and f
is said to be harmenious labelling of G.

Example

Harmonious labeling of the graph I Is shown In flgure.

]
q 1
4 a
5
4 0 2

FIG.5.1.1Harmonius labeling of K,

5.2 KNOWN RESULTS

1) Graham and Sloane conjectured that Every tree Is harmonlous.
Graham and Sloane also proved that,

2) Ky Is harmonious if and only if m orn = 1,

3) W is harmonlous ¥n.

4) Cycle C,,Is harmonious If and only If nis odd,

5) All ladders except L; are harmonious,

&) Friendship graph F,ls harmonious except n & 2(mod 4).

7] Fan f,, = B, + Kjls harmonlous.

8) Forn 2 2 the graph g, (the graph obtained by Joining all the vertices of P, to two
additional vertices) Is harmonlous.

9) E;"]Is harmonlous if and only if n 2 2(mod 4).

10) Golomb proved that complete graph Is harmonious If and only If n < 4,

[23]
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5.3. Harmonious labeling for different types of graphs :-

5.3.1.Harmonious labeling of fan graph
DEFINITION

The fan f,(n = 2) is obtained by joining all vertices of B, (Path of n vertices] to a further
vertex called the center and contains n+ 1 vertex and 2n-1 edges. l.e. f = B + K.

Example

FIG.5.3.1.1Harmonius labeling of fy

5.3.2.Harmonious labeling of friendship graph :-
DEFINITION

A friendship graph F,is a graph which consists of n triangles with a common vertex,

Example

[24]
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FIG.5.3.2. 1Harmonius labeling of Fy

5.3.3.Harmonious labeling of wheel graph :-
DEFINITION

The wheel graph W, is defined to be the join of K; + ,, i.e. the wheel graph
consists of edges which join a vertex of K, to every vertex of C;

Example

FIG.5.3.3.1Harmonius labeling of W,

Scanned by CamScanner



5.3.4.Harmonious labeling of helm graph :-
DEFINITION

The helm H,, is a graph obtained from a wheel by attaching a pendant vertex at
each vertex of the n - cycle as shown in figure.

Example

FIG.5.3.4.1 Harmonius labeling of Hg

5.3.5.Harmonious labeling of ladders graph :-
DEFINITION

The ladder Ln (n 2 2) is the product graph P; x P, which contains 2n vertices
and 3n - 2 edges.

Example
0 4 1 5 2 [i] 3
4 5 5] i g G
10 11 12 13 14 5 (3
0 1 2 3
o 7 ; B gy g 12 g 13

F1G.5.3.5.1 Harmonius labeling of L,

[26])
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5.3.6.Harmonious labeling of cycle graph :-
DEFINITION

A gyele is a path of edges and vertices where in a vertex is reachable from itself.A closed
path is called a cycle,

Example

FIG.5.3.6.1Harmonius labeling of Ce

[27]
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CHAPTER 6
ANTIMAGIC LABELING

6.1 DEFINITION AND EXAMPLE

DEFINITION

A graph G is called antimagic if the n edges of G can be distinctly labeled 1
through n in such a way that when taking the sum of the edge labels incident to each
vertex, the sums will all be different.

Example

For an example of an antimagic labeling for the graph Ky

8 2 1
1
3 5
4
13 6 12

FIG.5.6.1.1Antimagic labeling of K,

6.2 KNOWN RESULTS
1)For any integer k = 1, all (2k+ 2) regular graph are antimagic.
2)Every regular bipartite graph with minimum degree 2 is antimagic.
3)Czis antimagic and the vertex sums from a set of successive integers when n is odd.
4)5witching graph of a pendent vertex in a path is antimagic.
5)Every even degree regular graph is antimagic.
6)For K = 2, every K- regular bipartite graph is antimagic.
7)The path P,,, is antimagic forn 2 2,
8)The cycle C,, is antimagic forn = 3.
S)Middele graph of path F, is antimagic.
10)Splitting graph of path F, Is antimagic.
[28]
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6.3. Antimagic labeling for different types of graphs :-
6.3.1.Antimagic labeling of Caterpillar :-

DEFINITION
A caterplllar Is a tree In which all the vertices are within distance 1 of a central
path,
Example
[ 8 12 g 1" 10 1
L - * 3 L : - e 9
1 §
4 &

FIG.6.3.1.1Antimagic labeling of B,
6.3.2.Anlimapgic labeling of Path:-

DEFINITION
A path is walk In which no vertices is repeted .

Example

FIG.6.3.2.1Antimagic labeling of Py

[25]
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6.3.3.Antimagic labeling of Switching graph :-
DEFINITION

A switching graph is an ordinary graph with switches.

Switching of a pendant vertex in a path P,is antimagic.

Let vy, vy, ..., v, be the vertices of B, and G, denotes the graph obtained by
switching of a pendant vertex vof G = P, . Without loss of generality let the switched
vertex be ;. We note that [V(G,, )| = nand |E(G,,)| = 2n-4. We define
f: EI:E..]} = {1.2,...,.2n — 4}as follows:

Ford=isn-1;

flypwg,)=i-1;
For3isi=smn;
flesw)=n+i—-4,
Above defined edge labeling function will generate all distinct vertex labels as per
the definition of antimagic labeling. Hence the graph obtained by switching of a
pendant vertex in a path B, is antimagic.

Example

FIG.6.3.3.1Antimagic labeling af B,

6.3.4.Antimagic labeling of Middle graph :-

DEFINITION

The middle graph M{G) of a graph G Is the graph whose vertex set is W(G) U E|G)
and in which two vertices are adjacent if and only If either they are adjacent edges of G
or one is a vertex of G and the other is an edge incident with it,

[30]
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Example

12, g 28 10 32 o, 11 28 e,

FIG.6.3.2.1Antimagic labeling of M(G)

6.3.5.Antimagic labeling of cycle graph :-
DEFINITION

A cycle is a path of edges and vertices where in a vertex is reachable from itself.

Example

s ¢ g
FIG.6.3.5.1Antimagic labeling of C;

6.3.6.Antimagic labeling of Regular graph :-
DEFINITION

A graph in which all vertices are of equal degree is called a regualr graph.

[31]
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Example

(&)

FIG.6.2.6.1Antimagic labeling of 4-regular

[32]
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CHAPTER 7
DIVISOR LABELING

7.1 DEFINITION AND EXAMPLE

DEFINITION :-

In 2000 singh and santhash defined the concept of a divisor graph. They defined
a divisor graph G as an ordered pair { V,E ) where Ve Z and foralluv EV ,u#v,uv EE
if and only if u|vorv|u.

EXAMPLE :-

n C 2 3
b d 5] 4
G: Gis):
FIG.7.1.1.

7.2 KNOWN RESULTS

1) Every bipartite graph is a divisor graph.

2) All graphs of order less than six are divisor graphs with the exception ofC.
3) By X F, is a divisor graph.

4) The cycles Cynare divisor graphs for all n 2 2.

5) Odd cycles C;,, 4 for all n > 1 are not divisor graphs.

6] The Petersen graph is not a divisor graph.

7) Every graph is a subgraph of a divisor graph.

8) Every tree is a divisor graph,

9} The ladder graph Lis a divisor graph.

10) Helm graph is divisor graph.

(33]
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7.3. Divisor labeling for different types of graphs :-

7.3.1.Divisor labeling of ladder graph :-
DEFINITION

The ladder Ln (n 2 2) Is the product graph P; x P, which contains 2n vertices
and 3n - 2 edges.

Example

2 a0 - Tig i3

42

185 1" LR |

FIG.7.3.1.1Divisor labeling of L

7.3.2.Divisor labeling of wheel graph :-

DEFINITION

The wheelgraphW, is defined to be the join of K; + €, i.e. the wheel graph
consists of edges which join a vertex of K; to every vertex of C,, .

Example

21

FIG.7.3.2.1Divisor labeling of W,
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7.3.3.Divisor labeling of helm graph :-

DEFINITION
The helm H,, is a graph obtained from a wheel by attaching a pendant vertex at
each vertex of the n - cycle as shown in the Figure.

Example

FIG.7.3.3.1 Divisor labeling of Hjg

7.3.4.Divisor labeling of cycle graph :-

DEFINITION
A cycle is a path of edges and vertices where in a vertex is reachable from itself.
A closed path is called a cycle.

Example

21

FIG.7.3.4.1 Divisor labeling of C,

[35]
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7.3.5. Divisor labeling of fangraph:-
DEFINITION

A fan Is obtained by Joining all vertices of P, to the further vertex called center
and contains n + 1 vertex and 2n - 1 edges.

Example

1
FIG.7.3.5.1Divisor labeling of f;

7.3.6. Divisor labeling of friendshipgraph :-

DEFINITION
F, is a graph which consists of n triangles with a common vertex.
Example
2 4
7 3
14 &
10 5

FIG.7.3.6.1Divisor labeling of Fy
[36]
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‘ % Golden Ratio

found by dividing a line

into two parts so that the longer part
divided by the smaller part is also equal to
the whole length divided by the longer
part. It is often symbolized using phi, after
the 21st letter of the Greek alphabet.
Phi is usually rounded off to 1.618

| The Golden ratio is a special number

EXAMPLE :-

For example, the ratioof 3 to 5 1s 1.666. ...
Getting even higher, the ratio of 144 to 233 is
1.618. These numbers are all successive
numbers in the Fibonacci sequence. These
numbers can be applied to the proportions of
a rectangle, called the Golden rectangle.

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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«» Golden Ratio

L |

111589

6fs =55

“Make for yourself an ark of gopher wood; you
shall make the ark with rooms, and shall cover it
inside and out with pitch. This is how you shall

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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make 11 the length of the ark three hundred cubits,

s breadth Bty cubits, and its height thirty

cubits.”

Gienesis 6:14-15 (NAS)

SHREE M P SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR

Scanned by CamScanner



AFRICAN DAISY 21-PETAL

01. Draw a square

This will form the length of the 'short side' of the
rectangle.

SHREE M.P SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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 Golden Ratio

02. Divide the square

Divide your square in half with a vertical line,
leaving you with two rectangles

03. Draw a diagonal line

In one rectangle, draw a line from one corner to

the opposite corner.

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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(

a+b

A golden rectangle with longer side a and
shorter side b, when placed adjacent to a
square with sides of length @, will produce
a similar golden rectangle with longer side a
+ band shorter sidea. This illustrates the

relationship

where the Greek letter phi(gorg)  represents
the golden ratio. It is an irrational number with
a value of:

The golden ratio is also called the golden
mean or golden section (Latin: sectio awrea).
Other names include extreme and mean

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE .

SURENDRANAGAR
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< Golden Ratio
ratio, medial section, divine

proportion, divine
section (Latin: sectiondivina), golden
proportion, golden cut, and golden number,

The Actual Value

The Golden Ratio is equal to:

1.61803398874989484820... (etc.)

The digits just keep on going. with no pattern. In
fact the Golden Ratio is known to be an Irrational

Number, and I will tell you more about it later.

Calculating It

You :.:f;an calculate it yourself by starting with any
number and following these steps:

. A)divide | by your number (=1/number)
. B)add I
. C) that is your new number, start again at A

With a calculator, just keep pressing "1/x", "+", "1".
"=", around and around. I started with 2 and got this:

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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1

i
Here is one way to draw a rectangle with the Golden
Ratio:

. Draw a square (of size "1")
i’iacﬁ a dot half way along one side
. Draw a I:m: fmm that point to an opposite corner (it is

Scanned by CamScanner



The Formula

That rectangle above shows us a simple formula for the

Golden Ratio.

When one side is 1, the other side is:
1,8 _144B
Sl g

The square root of § is approximately 2.236068, so the
Golden Ratio is approximately (142.236068)12 =
3.236068/2 = 1.618034. This is an easy way to calculate
it when you need it.

Interesting fact:the Golden Ratio is equal to 2
sin(54"),get your calculator and check.
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And here is a surprise: when we take any (WO

quccessive fone after the other) Fibonacci
Numbers, their ratio is very close to the Golden
Ratio.

In fact, the bigger the pair of Fibonacci Numbers, the
closer the approximation. Let us try a few:

A B B/A

2 3 1.5

3 3 1.666666666...
5 8 1.6

8 13 1.625

144 233 1.618055556...
233 377 1.618025751...
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7408 11984 1.61771058...
1198419392 1.61815754...

The Most Irrational ...

I believe the Golden Ratio is the most irrational
numhf:r Here is why ...

‘One of the special properties of the Golden Ratio is
that |
it can be defined in terms of itself, like this: | T

Bp=itle e

Scanned by CamScanner
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Approximations to the reciprocal
golden ratio by finite

continued fractions.

or ratios of Fibonacci numbers

The formula ¢ = 1 + 1/¢ can be expanded recursively
to obtain a continued fraction for the golden ratio

The convergents of these continued fractions (1/1, 211,
312, 5/3,8/5, 13/8, ..., or 1/1, 1/2, 2/3, 3/5, 5/8, 8/13, )
are ratios of successive Fibonacei numbers.

The f_.equatiun o= I + @ likewise  produces
the continued square root, or infinite surd. form: 1

:pr=‘fl+J1+\/1+,/rr.‘._

An infinite series can be derived to express phi

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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13 =~ (=1)"*4(2n + 1)
B net) (104 2)Intgtentd -

Also:

p =14 2sin(7/10) = 1 + 2sin 18
1 1

Y= Ecsc{m‘lﬂ) ot csc 18

p = 2cos(n/5) = 2cos 36°

¢ = 2sin(37/10) = 2sin 54°.

These correspond 1o the fact that the length of the
diagonal of a regular pentagon is ¢ times the length of
its side, and similar relations in a pentagram.

Relationship to Fibonacci sequence :-

The mathematics of the golden ratio and of
the Fibonacci sequence are intimately
interconnected. The Fibonacci sequence is:

Iy 1,2, 3,5, 8, 13, 21.34,°55; 89, 144, 233
377. 610,987

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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for given coefficients a, b such that x satisfies the
equation. Even more generally, any rational
function (with rational coefficients) of the root of

an irreducible nth-degree polynomial over the |
rationals can be reduced to a polynomial of
degree n || 1.Phrased in

terms of field theory, if @ is a root of an

irreducible nth-degree  polynomial, then “le)as
| degree n U.over, with basis {1, ot vaestt 1}_

Other Names

The Golden Ratio 1s also sometimes called the golden
section. golden mean, golden number,divine
proportion, divine section and golden proportion.

» How do vou use the golden ratio?

One very simple way to apply the Golden Ratio is to

set your dimensions to 1:1.618. For example, take your

SHREE M.P.5HAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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typical 960-pixel width layout and divide it by 1.618.

You'll get 594, which will be the height of the layout.
Now, break that layout into two

columns using the Golden Ratio and voila!

» Is Golden Ratio irrational? :-

The Golden Ratio 1s equal to:
1.61803398874989484820... (etc.) The digits just keep
on going, with no pattern. In fact the Golden Ratio is
known to be an Irrational Number, and | will tell you

more about 1t later.

» What is the exact value of the
golden ratio? :-

The Golden Ratio, the perfect number iIn
mathematics, is the squareroot ofSplus 1,
divided 2. Interestingly, It's the only number that if
squared, is equal to itself plus one. In other words,
Phi*2 = Phit1.

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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sainting seems to be made purposefully line up
|

with eolden rectangle

Golden ratio in design ipod:

The ipod was designed by Jonathan Ive and his
team of designers. Their goal was to create the
perfect product. They achieved this with an
extreme amount of attention to detail.One aspect
of the design as the basic shape of the device.

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE "
SURENDRANAGAR
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lhe rectangle that is the ipod comes closer than
any other MP3 plaver to the golden ratio 1:1.618
(also sometimes called the golden ratio). This ratio
appeals to us at an unconscious leyel.

It’s important because it is found (or appears to be)
N so many areas of life, most notably in nature.
and most importantly in mathematics. The
Fibonacci sequence and the concept of fractals
(like the infinity divisible golden rectangle) are
great examples of this. Ancient Egyptian and
Greek architects built many of their structures with
this ratio in mind. Philosophers see this ratio as
having an important significance, since it
oceurs in nature so ofien,

SHREE M.P SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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A lot of people believe that this formula, known as
the golden ratio or phi () pops up in everyday
life.

Golden Ratio in Music :

Music in composed of numeric value and when the
Golden Ratio is used to creat a musical piece , 1t
become a living example of Math .The Fibonacci
Sequence is also prevent in music.

A few of classical composer used the
Golden Ratio ane Fibonacci Sequencing in music
piece including Bach. Beethovan . Chopin . and
Mozart. Some Modern composers, like Casey
ongoven, have explored these age old teuism in the
music.

Jame Tennyb redid has piece For Ann. Now
it consist of up to twele computer — generated
upwardly glissan doing tone having each tone start
so it is the golden ratio below the previous tone.
-:-Sﬂ that the combination tone produced by all
ecutive tone are a lower or higher pitch
ly, or soon to be, produced.

I;I Gﬁand’s points out then on the 5-tone
(the black note ion the plann] and the 13-
‘scale {n complete octave in semitones with

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE .

SURENDRANAGAR
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the two notes an octave apart include), However.
this 1s bending the truth a litte, since to get both
and 13 , we have to count the same note twice
(C...C m both cases). It i1s called an octave.
because we usually sing or play the 8" note which
complete the cycle by repeating the starting note
“an octave higher * and perhaps sounds more
pleasing to the ear. But there are really Only 12
different note in our octave, not 13!

Various composers have used the Fibonacci
numbers when composing music and some author

find the golden section as far back as the Middle
Ages(10" century)

GOLDEN RATIO IN VIOLIN CONSTRUCTION

The section on “the violin™ in the New Oxford
Companion to Music, volume 2, shows how

Stradivari was aware of the golden section and
used it to place the f-holes in his famous violins.

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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Stradivari used the golden section (o place the |

holes in his famous violins
Baginsky's method of constructing violing 15 also based
on golden sections

GOLDEN RATIO IN NATURE

We can found Golden Ratio in our nature at
everywhere. For example in humans, animals.
flowers, vegetables, fruits and more.

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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Golden Ratio in Sunflower:

Plants can grow cells in spirals, such as the
patterns of seeds in is beautiful suntflower.

The spiral happens naturally because each new cell
is formed after a turn.

i SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR

Scanned by CamScanner



I ——

“ Golden Ratio

“new cell. then turn. then another cell. then
N,

How far to turn?

In sunflower if any cell don’t turn at all then it
would have a straight line.

i
(g

I' e A A
. : Vs

This is because the Golden Ratio (1.61803...0) 1s
the best solution to this problem, and the

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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sunflower has found this solution in its own
natural way.

It should look like this.

» Golden Ratio with Spiral Leaf
Growth

This interesting behavior is not just found in
sunflower seeds. Leaves, branches and petals can
growth in spirals, too.

50 the new leaves don’t block the sun from
order leaves, or so that the maximum amount of
rain or dew gets directed down to the roots.

’ Importance of Golden Ratio:-

It's Important because it 1s found (or appears
to be) in so many areas of life, most notably in
nature, and most importantly in mathematics. The
Fibonacci sequence and the concept of fractals
(like the infinitely divisible golden rectangle) are
great examples of this. Ancient Egyptian and
Cireek architects built many of their structures with
this ratio in mind. Philosophers see this ratio as

 GHAEE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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having an importance, since It occurs In nature so
often.
A lot of people believe that this formula,
known as the golden ratio
(¢) pops up in everyday life.

»  Golden Ratio Art Project :-

Using the Golden Ratio or the Fibonacci pattern
demonstrate using art. music, nature or
architecture, the interesting possibilities of the
ratio phi.

Your project will be graded according to these
guidelines:

1. Your project will clearly express the Golden
Ratio. If it 1s not visually clear than you will
explain your observation of the ratio in written

form.

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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2. Your project will be attractive,
3. Your project will be neat.

4. Your project will have color and/or texture.

5. It will be clear to me that you have given
thought and energy to this assignment.

6. No part of your project will be cut and pasted
from the internet

Use Of Golden Ratio :-

~ Use of the golden ratio in other field beside

mathematics

Scanned by CamScanner
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| % Golden Ratio

Golden ratio has been used in many other field
beside mathematics like Jarchitecture | art painting
book design industrial design,

Architecture :-

The medieval builders of chuches and cathedrals
approached the design of their building in much
the same way as the Greeks . they tried to
connected geometry and art.inside and out , the ir

buildings where intricate construction based on the
oolden section.

SHREE M. P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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Industrial design :

Some  sources clinm that the golden rano 18
commonly used in everyday design Jor example in
the shapes ol posteards |, playing card, posters |
wide screen television |, photograph and  light
switch plates

Fainting :.

Fhe  sixteen  century  philosopher  henrich
Agrippa drew a man over a pentagram inside a
cirele implying a relationship to the golden ratio.

Book design :-

According to jan tschichold there was a time
van deviation from the truly beautiful page
proportions 2:3, 1:/3, and the golden section were
rare.many books produced between 1550 and 1770

so this proportions exactly | to within half a
millimeter .

SHREE M P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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% Golden Ratio

USE OF THE GOLDEN RATIO IN EVERYDAY
LIFE :- |

The golden ratio is very usefull in our life. For
example credit cards, logos, design of ipod and
more. ...

Credit cards are in the shape of golden rectangle
Standerd sized credit cards are 54mm by 86mm.
This creates a ratio of 0.628 which is less than a
millimeter off from a perfect golden ratio or
golden section of 0.618 , the reciprocal of 1.618

Visa Prepaid

i
WPLLS

SHREE M.P.SHAH ARTS & SCIENCE COLLEGE
SURENDRANAGAR
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1.HISTORY

In mathematics and signal processing the z-transform converts a discrete-
time signal, which is a sequence of real or complex numbers, into a complex

frequency domain representation.

The basic idea known as the z-transform was known to Laplace, and it was
re-introduced in 1947 by W.Hurewicz and others as a way to treat sampled-data
control systems use with radar. It gives a tractable way to solve linear, constant
coefficient difference equations. It was later dubbed “the z-transform” by

Ragazzini and Zadeh in the sampled-data control group at Columbia University

in 1952,

Z-transform plays the same role in discrete analysis as Laplace transform in
continuous systems. As such, Z-transform has many properties similar to those

of the Laplace transform. The main difference is that the Z-transform operates
not on functions of continuous arguments but on sequence of the discrete

integer valued arguments,

The modified or advanced Z-transform was later developed and

popularized by E.l.Jury.

PEER R IR

r[

—ies - - | ol
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2. INTRODUCTION

2.1 Definition

If the function w,, is defined for discrete values (n=0, 1, 2 ..) and u, =0 for

n<0, then its Z-transform is defined to be

2. )=z)s Yoo UnZ™" ssrssssssans (1)
Whenever the infinite series converges
The inverse Z-transform is written as z~ ' [U (z)] = u,,.

If we insert a particular complex number z into the power series (1) the

resulting value of Z (u,,) will be a complex number. Thus the Z-transform U(z) is

a complex valued function of a complex variable z.

2.2 Types of Z-transform

» There are two types of z transform:

1. Bilateral Z transform — two sided
X(2) = Yn--wexinlz™
2. Unilateral z transform — single sided

X(e) = Yrpxinlat
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2.3 Formula of Fourier transform and Z-transform

The following eq. (1) and (2) are z-transform and Fourier transform respectively
Xz)= Yo -wXinlz™® vmssvns L]
Replacing z with e/® z-transform will become Fourier transform

X(el®) = Y .o x[n] e~dom o (2)

2.4 Some standard Z-transform

The direct application of the definition gives the following results:

$ 1. Z(a™)=—

1
Proof: By definition,
2t =Y "

= 1+ (a/z) + (a/2)*+ (a/2)°+ ....... '
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-2- Z{nﬂ )= -7

¥

4 -1
5 Zm7)

" Proof:

k-

BE(NP) = TroonPz "=2T 0 onPt n 2~ (i)
~.

. Changing p to p-1, we get Z(n?~ ') = ¥ nP~1z 7"

'Blffarentiating itw.r.t, z

h ~
d Ly be o _ g
. IdllZ{np 1}] =Eﬂ.=ﬂ np 1‘ (__n)' z-*{ﬂ'l'l} TR “i] _..'1‘ .
b \
_bSubstituting (ii) in (i), we obtain Z(n”)= -z ;;anﬁ“l}
b _
- Which is the desired recurrence formula. ' |

.h'l.n particular, we have the following formula:

:.?.I*I“tz +2
(z—1)*
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3. REGION OF CONVERGENCE (ROC)

3.1 Definition

There exists no any point at which the value of function become infinite is

known as region of convergence,

As we are aware that the Z- transform of a discrete signal x(n) is given by

Xizy= z x(n)z™

n=—oa

The Z-transform has two parts which are the expression and Region of

Convergence respectively.

Whether the Z-transform X (z)of a signal x(n) exists or not depends on
the complex variable z as well as the signal itself. All complex values of
“o=1rel®"for which the summation in the definition converges form a region of
convergence (ROC) in the z-plane. A circle with r=1 is called unit circle and the

complex variable in z-plane is represented as shown below.

; | i
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3.2 Properties of ROC

- Property 1.

The ROC of X () consists of a ring in the 2-plane centered about the @

This property is llustrated in figure below and follows from the fact th
the ROC consists of those values of 7 = re’™ for which l‘lnlf""hﬂl
trlnsfurrn that converges. That is, the ROC of the Z-transform of Mé
the values of z for which x(n)r ™ is absolutely summable.

Z—: x(n)jr " < =

e - =

WS VTUNVIT i idddddaisiidaaqs

.1!.;.‘
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Thus, convergence is dependent only on r=|z| and not on w.
Consequently, if a specific value of z is in the ROC, then all values of z on the |
same circle (i.e., with the same magnitude) will be in ROC. This by itself

guarantees that ROC will consist of concentric rings.

In some cases, the inner boundary of the ROC may extend inward to the l

. Origin, and in some cases the outer boundary may extend outward to infinity.
Property 2: |

If the Z-transform X(z) of x(n) is rational, then the ROC does not contain

any poles but is bounded by poles or extend to infinity.

As with the Laplace transform, this property is simply a consequence of

the fact that at a pole X(z) is infinite and therefore does not converge.

Property 3:

If x(n) is of finite duration, then the ROC is the entire z-plane, except

3

possibly z=0 and / or z=2=
!

L A finite duration sequence has only a finite number of nonzero values,
i

extending, say, fromn = Nton = M, where N and M are finite. Thus the

( Z-transform is the sum of a finite number of terms; that is

|

) = Z x(n) z™"

n=N

|
.
-

bo For z not equal to zero or infinity, each term in the sum will be finite, and |

consequently X(z) will converge.

il - i o F -
| - _.:- e A - |
L TRty T S il ) = |
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If N is negative and M is positive, so that x(n) has nonzero values both for
n<0 and n>0, then the summation includes terms with both positive and
negative powers of z. As |z| -0, terms involving negative powers of z, become
unbounded, and as |z|-ee, terms involving positive powers of z become

unbounded. Consequently, for N negative and M positive, the ROC does not

include z=0 or z=oo.

If N is zero or positive, there are only negative powers of z and
consequently, the ROC includes z===. If M is zero or negative, there are only

positive powers of z and consequently, the ROC includes z=0.

Property 4:

_f x(n) is a right sided sequence, and if the circle |z|=ry is in the ROC, then all

finite values of z for which | z|>r; will also be in the ROC.

~ The justification for this property follow in a manner identical to that in Laplace

_transforms. A right sided sequence is zero prior to some value of n, say N,. If

the circle |z|=ry is in the ROC, then x(n)r™" is absolutely sum able. Now
I consider |z|=r, with r;>7;, so that r; " decays quickly than g ™ for increasing n

“ras illustrated in the figure below.

=

FEEYF IR ¥ 9
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*'Fn'.
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]
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n

Consequently, x(n) r; " is absolutely summable.

For right sided sequences in general X(z) = )2, _y, x(n)z ", where N, is
finite and may be positive or negative.

If N, is negative, then the summation above includes terms with positive

=

powers of z, which become unbounded as|z|->ee. Consequently, for right sided

sequences in general, ROC will not include infinity.

| However. for causal sequences, i.e., sequences that are zero for n<0, N,

will be non-negative, and consequently, the ROC will include z=e=,

- s — S S lu

-
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Property 5:

If x(n)is a left sided sequence, and if the circle |z|= 1, is in the ROC, then

all values of z for which 0 <|z|< r, will also be in the ROC. |

For left sided sequences, the summation for the Z-transform will be of the

form

M

x(z) = Z xm)z™

n=—oo

Where M may be positive or negative. If M is positive, then the transform
" includes negative powers of z, which become unbounded as |z|-20.
Consequently, for left-sided sequences, the ROC will not include |z|=0.

However, if M<0 (so that x(n)=0 for all n>0), the ROC will include z=0.

Property 6:

if x(n)is two sided, and if the circle |z|=r, is in the ROC, then the ROC will

consist of a ring in the z-plane that includes the circle |z |=r;.

Like corresponding property in Laplace transforms, the ROC of a two-sided

signal can be examined by expressing x(n)as the sum of a right-sided and a left-

" sided signal. The ROC for the right-sided component is a region bounded on the

inside by a circle and extending outward to (and possibly including) infinity as in

ure (a). The ROC for the left sided component is a region bounded on the

side by a circle and extending inward to, and possibly including, the origin as

figure (b). The ROC for the composite signal includes the intersection of the

OCs of the components as in figure (c).

11
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Property 7:

If the Z-transform X(z) of x(n) is rational, and if x(n) is right sided, then
the ROC is the region in the Z-plane outside the outermost pole i.e., outside the

circle of radius equal to the largest magnitude of the poles of X(z).

. Property 8:
L if the Z-transform X(z) of x(n) is rational, and if x(n) is left sided, then
b |

ROC is the region in the Z-plane inside the innermost pole i.e., inside the

. the
L eircle of radius equal to the <mallest magnitude of the poles of X(z) other than

“any at z=0 and extending inward to and possibly including z=0.

'.,..

= 12
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4. PROPERTIES OF Z-TRANSFORM

4.1 Linearity Property:

" Theorem:
|

If x,(n) & X, (2) with ROC = R, and x,(n) < X, (z) with ROC = R,
Then, a x,(n) +bx,(n) ol X1(z)+bX,(z), with ROC containing R; N R>
Proof:
Taking the z-transform
Z{ ax,(n)+bx,(n)} = X r=—{ax,(n) + bx,(n)}z™"

= n=-wX1(M)Z7" + b Xn- = X(n)z™"

=aX,(z) + bX,(2)

-

regions of convergence.

2

4

4 1

o

ncel poles, then the ROC may be larger.

B |

The ROC of the Linear combination is at least the intersection of R, and
R,. For sequences with rational z-transforms, if the poles of aX,(z) +
| bX,(z)consist of all the poles of X;(z) and X,(z), indicating no pole-zero I

I cancellation, then the ROC will be exactly equal to the overlap of the individual

If the Linear combination is such that some zeroes are introduced that

ScénnedBS/ CamScanner
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- 4.2 Time shifting property:

' Theorem:

If x(n) < X(z) with ROC=R

Then, x(n —m) < z7™X(2) with ROC= R, except for the possible addition or

deletion of the origin or infinity.
Proof:
Z{ixtn —m)} Yot oxn—m)z™
Let n-m=p
= Y pe—o X(p) 2P
=2 YR k(D)2

= E"”IK(EJ

4.3 Scaling in the Z -Domain:

Theorem:

i x(n) & X(z) with ROC=R.

E Then, zy x(n) o X(i) with ROC= |z, |R where, |z, |R is the scaled version of R,
’ Proof:
L
Z{z§x()} = B 282 (27" = e X)) = X))
e 14

] 1 T

: ML
L3 g st
' - b o LT
o ‘.ﬂ/ C Rl T N

Scanned by CamScanner




4.4 Time reversal property: I

Theorem:

£
If x(n) < X(2) with ROC= R then x(~n) = X(2) with ROC=~.
Proof:

Zix(—n)} Y n=—wx(—n)2z™

Let -n=p
=Tpe-wx(P) (2)° = Tp o x(P) (27) P = XE) |

4.5 Convolution property:

Theorem:
LIf x4 () © X, (z)with ROC = R,& x,(n) & X,(z) with ROC= R,Then,
x,(n) * x,(n) S X,(2).X;(z), with ROC containing Ry N R,
"~ Proof:

b Z{x;(n) * x3(n)} = Lne—oe{x1(n) +x5(n)} 27"

. = Eﬁ:-m{z:ﬁ:—m X1 [m)xz(n —— m) z—ﬂ}

" Interchanging the order of summations

o Z{xy(n) * x,(n)} = Y ok (M) (Er e X =M™}
ﬁnta from Time shifting property)

=X, (2 Tm=—w X1 (M) z2™™} =X,(2).X,(2)

15
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“'4 4.6 Accumulation property:
54

o

Theorem:

1
j-z~V

7z ) Z
# x(n) < X(z) withROC=Rthen ¥7___ x(k) < X(2).

With ROC containing RN {|z|>1).

-“n

ke X(k) = x(n)*u(n)

Z{ke-wXx(k))=Z{x(n) » u(n))

Irrryrrrsx

Applying convolution property

1
-z~

Z(Yr__ x(k)} = X(2).

4.7 Time Expansion Property:

- Theorem:

1f x(n) - X(z) withROC=R

'u'

TITIXEY

J'[hen X(m)(n) o X(z™) with ROC= RY/™

FETYEY

That is, if Ris a <|z| < b, then the new ROC is a<|z™ |<b, or a'/™< |z| <b*/™,
“Also, if X(2) has a pole (or zero) at z = a, then (z™) has a pole (or zero) at z}/™.
rooﬁ

i The Z- transform of x,,,(n) is given by

.
»

' R & B
. E Y
= '
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L

mﬂ at the same location as earlier.

YV

-

Z{I{HH{.”]} = E;:_,,.,I““}(n)z_” - ZZ’:-WI%)E'”

Changing the variables is performed by letting r = n/m, which also yields r = - |

as n=-eo and r=eeas n=ce, Therefore,

Z{IUH}UI-] } = ET:-—MI(T*}E_HW = E?;_ml' (r){-?m] -7 = X(zm)

4.8 Differentiation in the Z-Domain:
Theorem:

If x(n) < X(z) with ROC=R

dﬁLEJWIth ROC=R

£
Then, nx(n) « —

Proof:

“Z transform is given by
Z{x(n)} = X(z) Zn=-=x(n)2™"

Differentiating above on both sides with respect to z

= -—{E,,.._...,r{njz ot {2 e x(n] ~{z7"} = Le-u—nx(n) 27!

&F

dxX(z)
az

= Ln=-=nx(n) 27"

nparing both equatmns-—z—di—} is the z transform of nx(n) ROC remains the

same R because differentiating X (z) will increase the order of the poles m

17
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4.9 Damping Rule:

Theorem:

It Z(u,)=U(z) then Z(u,,a™™)=U(az).

Proof:

By Definition

Z(upa™") = Yo _ouza "z "
= Zn=o Un(az)™

=U(az)

Scanned by CamScanner



5.1 Initial value theorem
Statement:
If x(n)=0, for n < 0 then initial value of x(n).
.e. x(0) = lim,_,.. X(2).
Proof:
We know that Z{x(n)} = X(z) = Y7 _,x(n)z ™"
Expanding the summation
X(z) = Xop¥()z =20} + % (D27 2+ 2(2)2 i

Applying the lim on both sides
P

lim,_,.. X(z) = lim{ x(0) + x(1)z ™'+ x(2)z~%+....}

Z—oo

lim,...X(z) = x(0)

5.1.1 EXAMPLE: Find the initial value of the signal

| 1
| x(n) =7()" u(n) -6 )" u(n)

Solution:

+ Given signal x(n)= ?[i)“ u(n)-6 (%}” u(n)

|

5. TWO BASIC THEOREM

[ -
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| Applying z-transform

pe s | 7 6 - |
L X@) e s i

""i-! ' 1—“21 (1—;!_1}{1-*53-‘]

~ Applying initial value theorem

lim,_. X(z) =lim,_,,, —4——32—— =1

5.2 Final value theorem
Statement:

If x(n) is causal and X(z) is the Z-transform of x(n)and if all the poles of
- X(z) lie strictly inside the unit circle except possibly for a first order pole at

" z=1then,
o

o limy e x(n) = limgL, (1 - 271)X(2)
m

:wﬂef the Z-transform of x(n)-x(n — 1)
x(n) —x(n—1) & (1-2"")X(2) iy e -
| L . ﬂ; v :'(u - 1}] ._S:.‘ :{ﬁ} “ﬁ’ i-‘ e . | e, IF
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lim,_,, (limy e Xn-olx(n) = x(n = 1)}z7") = Lln} (1-2z")X(z)
LHS after applying the limit z->1 becomes

{limy . X0 o(x(n) = X(n = 1))} = limy e {{x(0) — x(=1) + x(1) = x(0) +
AR A .. +aV- T2 V- 2H 2V V- 1)

All terms cancel except x(n), Therefore,
limy . x(n) = lim,_,;(1 =z DX(2)
5.2.1 EXAMPLE: Apply the final value theorem to determine

x (=) for the signal

1, if niseven
0, otherwise

)|
Solution:
Given that

1, if niseven

x(n)= 0, otherwise

From the definition of the unilateral z-transform, we have

X(2)=En=ox(n)z " =L n=g (127"

nis even

_ Substituting n = 2r,

—— ROC |272| <1 |z > 1

RE(Z) =iz = Lragl ) = 1-z-2’

21

i
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| From the final value theorem, we have

“) = LII}}[I - E_I)x{l)

e limyn (1= )
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6. EXAMPLE OF Z-TRANSFORM

Example 1:

9|
9
>
L
9
>
.

l Determine the Z-transform and ROC of the signal

I". Solution:

|I1 Zix(n)} = Z{u(n)} - Z{u(n - 10))

Example 2:

Find the Z-transform and ROC of x(n) = §(n+1)- 26(n)+5(n-1)
Solution:
Given signal x(n) = 6(n+1)= 26(n)+6(n-1)
Applying Z-transform on both sides
X(z) =z=2+271

ROC Is entire Z-plane except z=0 and z= eo

e e ——

43
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Example 3:

Find the Z-transform and plot the ROC of

x(n)=7 {%}” u(n) — 6 G)ﬂ u(n)
Solution:

n
Given signal is x(n)=7 (gj” u(n) — 6 G) u(n) right sided

We know that b"u(n) P 1z]l > b

1—hz~1"’?

- Therefore,

b

k

_ For convergence of X(z), both sums must converge, which requires that the

(1/3)" o 1_(;}3_] ;ROC: JZ|3='(%J{5hDWﬂ in figure a} and
3

Z 1 1 Aol
(1/2)" < —5—iROC: [z]|>(){As Shown in figure b}

=

2

1 — & 1

1-(2)z"! 1-(5)z™

X(Z)=7

—
=

1 1
(z-3)(z—3)

- ROC should be
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o : 1 £ s
An intersection of |z|> l;) and |z|> (E)* ie.,|z|> (%] {shown in figure c}

The pole zero plot and ROC are shown in the figure below

Example 4:
Use the convolution property to show that

" u(n) = uln — 1) = nu(n).
-
~ Solution:

._m x(n) = uln) *uln - 1) = nu(n)
.

. Taking the z-transform of x(n) and using the convolution property, we get |
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- ==

Pl

X(2) =—

f1=z—1)e

Also from differentiation in z-domain property

=1

I a4 a
n.u(n) « —z ) ==

Hence u(n) + u(n — 1) = nu(n)

Example 5:

(1, if niseven
x(n) = [{], otherwise

Solution:
Given that

1, if nis even
q xin) = {U, otherwise

X(z) = Ynp=ox(n)z™" =3 n=0 (1)z7"

1 s even

Substituting n=2r,

Z{x(n)} = Z{u(n) *u(n - 1)} = (1_:,_;) (::-1)

Apply the final value theorem to determine x(==) for the signal

From the definition of the unilateral Z-transform, we have

26
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X(2) = Loz ™ = Eruo(z™?)" = ——ROC |27%| < 1= |z] > 1

From the final value theorem, we have

x(ee)= lim, (1 - z"Mx(z)
= ng..g(l - I'l) [T::'—I]
NI, S
(1-z~1)
- 1
2

5 e S~
Xy " i L w e O
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7. SOME STANDARD RESULTS

7.1 The application of the damping rule leads to the following standard results.

az

1. Z(na")=

a
i

(Z—a )

F4

We know that Z(n)=

({Z—1
Applying Damping rule, we have

Z(na™)= U(a 'z)

fa~lz—1)
_ az
" (z—a)?
az’+a*z
o YR

y, E'i"r'..'-'_"
We know that Z(n<)= —
— A

. Applying Damping rule, we have

(a"*z)*+a™'z

Z{HHHE_}:UIH‘IEJ o I:H_IE—]._:I":

L a(z*+az)
T (z-1)3
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Z(Z—cosh)
2°-2azcosB+al

3. Z(cosn@) =

We know that z(1)= —

Applying Damping rule, we have

Z(e~®) = 7(e-i0)" 1

Il

EE[H

zelf—q

Z

z—e—it

z{z—ewj
(z—e~0)(z—e'f)

z(z—cosl)—izsinf
z2—z(etf+e=19)+1

z(z—=cos@)—-izsind
ze-2zcos8+1

z{z—cos ) . zsin#

_— e= ]

{
zZ-2zcos 6+1 z2-2zcos@+1

Now, equating real part, we get

z{z—cos @)
z2_2zcosf+1

Z(cosnf) =

: = g
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zsinB
zZ-2zcosB+1

4. Z(sinn@)=
We know that, Z(1]=i—1'
Applying Damping rule, we have
2{e~in8y = z(e~18)" .1

E’E'H

zelf _q

&

I

z—e ¥

E[;{"EEE]
(z—e~10)(z—elf)

[l

Z(z—cos@)—izsin@
z2-z(etf4+e=10)41

2{z—cos@)—izsin#
Ze=27Cos56+1

z(z—cos8) : zsin#d

==
zZ-2zcosf+1 z==2zcos0+1

" Now, equating imaginary part, we get

. Z(sinnb)=

zsing
22-2zc050+1

30

v r'
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z(z—acos @)
z¢-2azcos B+al

.Zla"cosn@) =

e know that, Z(cosnf)= —=—"_

iﬂv damping rule, we have
e
Z(a"cosnf) = (
-

a 'z{(a"'z—cos@)
a~1z)?-2(a"'z)cosf+1

z{z—acos @)
z2—-2azcos B+a’

-
-
o

L
"

)= azsinf
17 22 -2azcos 8+a’

B ind
We know that Z(sinnf)= — _:: e

B 1 I.
A1 08
i et B

e T T
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7.2 SOME USEFUL Z-TRANSFORM

" sr.No  Sequence u,(n = 0) Z-transform
| U(z) = Z(uy)
lL——_l._ : kN Kz/(z-1)
| 2. -k b SO o Kz/(z+1)
TR N T /ix—~ 1)*
4. n’ (z* +2)(z— 1)?
5. n? -zd/dz [Z(ni"*‘]].p + ve integer
6. a™ z/(z-a)
7. na" az/(z — a)*
8. n“a™ (az® + za®)/(z — a)’
9. sinnf o [ il
10 cos né _ 2(z—cos8)
e
11 a" sinnf = "'_’ o =
12 a™ cosnf _1_1;(_' = *ﬂ'ﬂ ﬂi oy
13 sinh nf Zsinh 0
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Two sided Z-transform is given as:

Hz)= ) el 2™ e (1)

In this case, the sequence is two-sided and the region of convergence for (1) is
the annular region |b < 1z 1< |c |

The linear circle bounds the terms in negative powers of z and the outer circle

bounds the terms in positive powers of z. The shaded annulus of convergence is

necessary for the two sided sequences and its Z-transforms to exist.

QZJ .b

(1) |z| > |a (1) |z| < |b|

(1)b] < |z] < ic|
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- EXAMPLES:
5
8.1 Find the 7 transtorm and repion of convergence of

i
(A" forn < 0
n un) = 2" form < 0

solution: By definition

—

-

Zluiny| = Zu[n}z"“ |

i

YL Aty 4 Y gngen

Putting —n=m in the first series, we got

e i S

‘" Zlu(n))=I7 4™ "z™ + Top 2z

Il

z ozt i 2 . 24
{E+E+F+”‘]+[1 +;+;§+"*}

A LR L A R I P C LR
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R 'tlh"h"[l “|
rpent i 7 les betweaen the annulus as Jown

[ Hence ;*|n{ui| 1% CONV

above fig. Henoe ROC Is 2< | Z | <4

8.2 u(n) (;:]n Kk

solution: By detinition

Zlu(n)] ‘*(r) L

'u.."" H jH.a, Ml
Lall = K I el .
Two find the sum of this series, we replace n by ktr,

Vimi I'-I + ,1 { " H
Zlulnll= 2 “( ) )_-; (ktr) E

4 ! E; u(h l ’-);—f ;

y

. - i |
This series is convergence for |;[¢1 e, for |z|>1.

® Hence ROCis |z]|>1.

e -w ¥
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8.3 f(n) 2" n<0
solution:

Assuming that f (n)= 0 for nz0 we have
Z(fn))=E% f(n) z™"

=yLan g

m=12 Mz™ Wherem = —n

Il

Z 4 rEy2 o Y L T—
2+(2) +(Zi} T

() ()

Il

- Hence ROCis |z|<2.
(n)=5"/n! ,nz0.
solution: By definition
Au(n))= T2 "

"

n!

=20

- - Z .
This series being a G.P. is convergent if |£[<:1 ie. |z|<2.

36
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=1+ Q430 4507 + e

The above series is convergent for all value of z.

Hence ROC is the entire z-plane.

ki
B
!I
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9. INVERSE Z-TRANSFORM

We can obtain the inverse Z-transforms using any of the following three

‘methods.

9.1 Power series method:

This is the simplest of all the methods of finding the inverse Z-transform. If
U(2) is expressed as the ratio of two polynomials which cannot be factorized, we

| simply divide the numerator by the denominator and take the inverse Z-

transform of each term in quotient.

EXAMPLE:

e —

. 1. Find the inverse Z-transform of lug{i] by power series method.

i

e —— =

. Solution:
' Putting z= — |
\ > |
,, 1 |
,_, U(z) = IDE(;l) l|
|
|
= —log(1 + y) F

1"

n

otherwise

0forn=20
in = |
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2. Find the inverse Z-transform of ——— by division method.

(z+1)%
Solution:
i
HNz)=—
{ ] Zo42241
1 247 |
= 7 - —
2544241
. 3 iz I!":‘!i"f'-'.'
=271 =278 4 =
Z°422+1
St ¢ n

=77 =227% 43273 -

Ze+22+1

Continuing this process of division, we get an infinite series i.e.
”[f ]:E:I-;n(— 1 ]” - Rz "
Thus,

u, = (—1)""'n

9.2 Partial fraction method:

' This method is similar to that of finding the inverse Laplace transforms
using partial fractions. The method consists of decomposing 22 into partial
Z

fractions, multiplying the resulting expansion by z and then inverting the same.

- 39

B J
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EXAMPLE:

| ¢ f 2:2+31
" 1. Find the inverse Z-transtorm o z+2)(z-4)

L

- Solution:
)
! 22°432
(z+2)(z-4)

We write U(z)=

U(z) _ +

|
i
]
l B (z+2)(Z2—4) z4+2 z—-4
r
|
|
|
|
h

1 Zz 11 Z
UG =-—+—-—

+2 b z—4

On inversion, we have

11 ,
B = (2" +— (4"

tz}:*-Z[Jz
(z—-2)3(z-4)

2. Find the inverse Z-transform of

‘Solution:

(2)3-20z
(z-2)3(z—-4)

We write U(z)=

U(z)  22-20z _ A+Bz+cz? D
Z —(3—2}3{2-—4] (z—-2)3 z—4

Iti lying throughout by (z — 2)°(z — 4), we get

g2 — 20 = (A + Bz + cz®)(z — 4) + D(z — 2)3
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- Putting z=0,1-1 successively and solving the resulting simultaneous

| equations, we get A=6, B=0, c:%

Thus U{Z} IIZE‘I"I ey z

(z-2)* (z-4)

12(z-2)%+42%482 z

il -

2 (z-2)3 (z—4)

1 z 272444z Z
= - - =
2{[2—2) 2 fz—2}3} (z—4)

| On inversion, we get
1
U, = 5(2” + 2?122“) — 47

= (2)"1 + n22n — 47

]
&l
'-—-'

= [ 2(z2-52+6.5
- 3. Find the inverse Z-transform of (& ~A2+55)

[((z—2)(z-3)%)

for 2<|z|<3.

‘Solution:

- Splitting into partial fraction, we obtain

[

= 2(z*-52+6.5
B U(z)- “

" [(z-2)(z-3)2]

A B C
T (z-2) & (z-3) & (z-3)*

1 1 1
(z-2) % (z-3) ¥ (z-3)*

U(z) =

_1 0 21 _ 1.4 21 1. 2,4
L = e R R R

7

=2 (142 +5+5+: )—%(1+§+;+§;+-~)
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| 1 2z . 32*° 47
. (1454454

Where, 2<|z|<3

! - l 2 2 1 Z Z
(5t b ) (G g 54 )

| 2 z4 z?

1 2z 2z*
+(32 + 3.‘! + 13 + .“)
_ xves = s 3] e 1.
- Zn=1 2l s Zn:fj(,‘iJnH + En=ﬂ(n +1) (;)ﬂ”Zn

- On inversion, weget u, = 2", n>1 and

U,=—(n+2)3"2, n<o

]

i
9.3 Inversion integral method:

The inverse Z-transform of U(z) is given by the formula

-_.ZHI

)
:
: U, = — [U(z)z" " dz
i

= sum of residue of U(z)z" ! at the poles of UJ(z) which are inside the

h-'%ﬂmur C drawn according to the ROC given

The following example will illustrate of this formula:
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EXAMPLE:

1. using the inversion integral method, find the inverse Z-transformation of

4

(z-1)(2-2)
Solution:
Let U(z)= ——
(2—1)(2-2)

Its poles are at z=1 and z=2
Using U(z)in the inversion integral, we have
— L N Tl—=1
Uy = —[U(2)z" ' dz

= sum of residue of U(z)z" 'at z=1 and z=2.

Now,

irl

Res[U(z)z" 1] ,=q) = lim,_1(z = 1)

(z-1)(2-2)
=-1
- And
II.
n—1 - 5
RE’S[U(Z)Z ](? = llm?_.g(z 2) D =2

[

. Thus, the required inverse Z-transform

*

it = 2 =« 1.a=012...

-

-

3

»
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2z
(z=1)(2%+1) "

Tl. Find the inverse Z-transform of

" Solution:

2Z
(z=1)(z+)(z-1)

Let U(z)=

It has three poles at z=1,z=+i
Using,U(z) in the inversion Integral, we have
1
= % =1
U, Em,_fU(z)g dz

=sum of residue of U(z)z" 'at z=1 and z= +i.

Now,

RES[U(E:}EII_FE](.E:H = lim,_(z - 1) {z—lz}f:z+lj

=1
| 22"
Res[U(z)z" ™) (z=iy = lim,_;(z — i =
[ (3)3 ]{_2-—[} hmz—-l{:z 1)'{3—1j{z+i}{z*i) ]|
=g
1+

2z0

(z=1)(z+i)(z-1)

RES[U(E)EHAI](‘?:_H — limz_._i(z = L)

_ ="

-1
(ar =0
ce Uy =1 = =
Hence, n 14  i-1
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10. APPLICATION

Z-transform is used to covert discrete time domain into a complex
frequency domain where, discrete time domain represents an order of complex
Or real numbers. It is generalize form of Fourier transform, which we get when
generalize Fourier transform and get Z-transform. The reason behind this is that
Fourier transform is not sufficient to converge on all sequence and when we do

this thing then we get the power of complex variable theory that we deal with

non-contiguous time system and signals.

This transform is used in many applications of mathematics and signal

processing. The lists of applications of Z-transform are as under:

4 Uses to analysis of digital filters.

% Used to simulate the continuous systems. |
4 Analyze the linear discrete system.

% Used to finding frequency response.

4 Analysis of discrete signal.

4 Helps in system design and analysis and also checks the systems stability.
4 For automatic controls telecommunication.

4 Enhance the electrical and mechanical energy to provide dynamic nature

of system.

Z-transforms represent the system according to their location of poles and
zeros of the system during transfer function that happens only in complex
plane. It is closely related to Laplace Transform. Main functionality of this

transform to provides access to transient behavior (transient behavior means
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changeable) that Monitors all states stability of a system or all behavior either
static or dynamic. This transform is generalize form of Fourier transform from a

discrete time signals and Laplace transform is also a generalize form of Fourier

transform but from continuous time signals.

* Application to difference equation:

Just as the Laplace transforms method is quite effective for solving linear |

differential equations the Z-transforms are quite useful for solving linear

difference equations.

The performance of discrete systems is expressed by suitable difference

equations. Also Z-transform plays an important role in the analysis and

representation of discrete-time systems, the solution of difference equations is |

required for Which Z-transform method proves useful.

Working procedure to solve a linear difference equation with constant

coefficient by Z-transform:

4 Take the Z-transform of both sides of the difference equations using the

formulae of application to difference equations and the given conditions.

# Transpose all terms without U(z)to the right.

4 Divide by the coefficient of U(z), getting U(z) as a function of z.

% Express this function in terms of the Z-transform of Known functions and
take the inverse Z-transform of both sides. This gives un as a function of n

which is the desired solution.
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EXAMPLE:

1. Using the Z-transform, solve

Upi2 + 4y + 3u, = 3" with u,

Solution:

z(uy) = U(2),Then z(uyyy) = 2|U(2)

2(Upyp) = H:lU{ﬂ — Uy — Wz

0, u,

w |

Taking the Z-transform of both side, we pot

'Y

z°[U(2) — up — uyz™ '] +8z[U(2) — uy| +3U(2)

=z/(z—3)

Using the given conditions, it reduces to

Uz)(z°+4z+3)=2+2/(z = 3)

Uz) _ 1 s 1
Z (z+1)(z+3) (z=-3)(z+1)(z+3)

L B} 11 5 1
© 8(z+1) 24 (z-3) 12 (z+3)

On breaking into partial fractions.

.y 2 T 2 5 =

U(Z}=E[3+1) 24(z-3) 12 (2+3)

—  ee—

- On inversion, we obtain

|
%

|

3 ,__1( & ) 1 _1( 1 ) 5
=-7 — - —_—] ——
Un 8 z+1 t z4z Z=3 12

BR-1)" + = (3)" ~ - (=3)"

-1
7 (—
Z+3

1

)
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LLINTRODUCTION

Jean Baptiste Joseph Fourier (1768-1830)

It was around 1804 that Fourier did his
important  mathematical  work on  important
memory on the propagation of heat in solid
bodies, which was read to the Parie mstitute
memory on December 21,1807 and a committee
consisting ol Lagrange, Laplace, Mange and

Lacrorx was set up to report on the work

The Institute set as a prize competition subject

the propagation of  heat in solid bodies {or the

sotorkzallon @ lndayintel comes

|81 1 mathematics prize. Fourier submitted his 1807 memory together with
addition work on the cooling of  inhmite sohds and terrestrial and radiant
heat. Only one other entry was received and the committee set up to decide
on the award of the |uin; Lagrange | Laplace , Malus, Haul and Leeendre
awarded Fourier the award ol the prize. The report was not however

completely favorable and states:

Lthe manner in which the author arrives at these equations is not
exempt  of difficultues and that s analysis o mtegrate them still leaves

something to be desired on the score ol generality and even rigor.”
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1.1: HISTORY

Fourier series is simply decomposing periodic function to
summation of simple sine & cosine to immediate the graph of
periodic function. It may not be perfectly same as smooth
periodic function such as multi-conditional function. However,
it accordingly represents periodic function with summation
notation that we have worked on often in mathematical
Progression. |

[t begins as study of trigonometric series by famous
&Bernoulli later Jean —Baptiste Fourier contributed most to
creating Fourier series as for solving heat equation in metal
plate.

Scanned by CamScanner



2. Periodic Functions

2.1 Definition:-
A function f(x) is said to be periodic p if f (x+p) = f(x) for all x.

Where, P>0 is called periodic, or more specifically. The number P is
called a period of f. If f 1s non constant, we define the fundam:ental
period, or simply, the period of f to be the smallest positive number P.

2.2 Examples
Example 1:-
f(x) = cosx
Solution: f(x+2m)= cos(x + 2m)
= COSX COS 2T - SIn X SINZT
=C08 X
= {(x)
Hence cos x is periodic of period 27 .
Example 2:-  f(x) = sin 4x
Solution: f(x**%) = sin ((x + g))
= sin(4x + 2m)
= sin4x cos 2t + cos 4x sin
=f(x)

. . ' ' I/ . .
Hence sin nx is periodic of period =i observe that 2m is also a period

of sin 4x .
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«* Useful Identities

* sin(ax + b)=sinaxcosb + cosax sinb
* cos(ax+ b) = cosax‘cos b — sinax sin b

Notes:-

* Any function can be considered periodic with period zero; this
period is trivial and is not considered as a pertod.
* If pis a period of f, then np is a period for any integer n.

Proof:
Want: f (x + np) =f(x)
We know that f (x +p) = f(x)
F (x+2p) =f (x +p +p) =f (x+ p) =f(x)
F (x+3p) =f(x+p+2p) =f (x+ p) =f(x)
F (x-p) =f(x-p +p) =f(x)
e If pis a period then % 1s not necessarily a period.

2.3Fundamental Period

The most interesting period for a periodic function is the smallest
positive period, this period is called the fundamental period.

The fundamental period of

; g
e s5in3x1s =

e Sinxis?2m

= —

- — - _——-——-——-——________-_____ ==t
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2.4 Period of Multiple Functions

Definition:-

If f and g are periodic of period p then so1s f+ g.

Proof:
Denote f+gbyh
Want h(x + p) = h(x)
h(x+p)=fx+p+gx+p))
=f(x) = g(x)
=h(x) h is periodic of period p

If f is periodic of period p then the graph of f repeats itself every p units

P

Il

2

£ s 1 PP
Therefore if we know the curve of a periodic function on [-7], then we

can draw the entire graph.
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2.5 Functions of Any Period p = 2L

In general

F {f} =a,+ Zﬁﬂ(aﬂ f:asn—? + b, SIHEF)

1 L
B0 = Ef_Lf[I)dI

_ 1l nmnx
Ay = EJ_LI(IJEGETG.’I

nmnx

1 (L .
bn = EI—L f(.?{) SLTL'L—{iI
Where period, p=2L

2.6 : Formal definition:-

If f(x) 1s periodic, with period 2, piecewise continuous in [-7r,7], has
a left and right-hand derivative at each x, €[-m, ], then its Fourier
series 1s convergent to f(x), except at a discontinuityxy, where the
sum 18 %{f (x9+0) +f (xg — 0)].

« REMARK

The left hand derivatives of f at x; is

f(xg=0)—f(xo—h)
h

Eimh—iﬂ_

Where f(xq — 0) = lim,_,,_f(x) and similarly the right hand
derivative of f at x 1s

fl:xu‘l‘h]‘—f{:l‘.'.u +I‘J]

Hmhﬂ 0+ h

We can in these circumstances write

_ %, v :
F(x)=—+ ¥a-:(a, cos nx + b, sin nm)
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3. FOURIER SERIES

Fourier series is an infinite series representation of periodic
function in terms Of the trigonometric sine and cosine
functions. Most of the single valued funetions which oceur in
applied mathematics can be expressed in the form of Fourier
series, which is in terms of sines and cosines. Fourier series 18
to be expressed in terms of periodic functions- sines and
cosines. Fourier series is a very powerful method to solve
ordinary and partial differential equations, particularly with
periodic functions appearing as non-homogeneous terms, We
know that, Taylor's series expansion is valid only for functions
which are continuous and differentiable. Fourier series 1s
possible not only for continuous functions but also for perodie
functions, functions which are discontinuous in their values
and derivatives. Further, because of the periodic nature,
Fourier series constructed for one period is valid for all values

FOURIER SERIES

——— iy

l l L A

Series With l-iarmnnic i
arbitrary Half-range Complex Analysis
period series series

- - e — —— s ——— S pus al

g

-
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3.2 Particular Cases:

Case (i)

Suppose a=0. Then f(x) is defined over the interval (0,21). Formula
(1),(2),(3) reduce to

ag =7, f@x)dx

Qy = % J’;t f(x) ms[%)xdx hn=1,2 ..... ... GO (6)

1 p2i . (np )
bn= Jy f(x)sin (T) xdx,
Then the right-hand side of (5) is the Fourier expansion of f(x) over the
interval (0,21).

If we set |=7 , then f(x) is defined over the interval (0, 2rr). Formulae (6)
reduce to

1 02p
Qo = 7)o flx)ax
' A 1 d =30 co [)
a, = ;Ig f(I)CDETII X , = ¥ sy 7
L ' d = 1.8 00
b, = I—J“fﬂ f(x) sinnxdx NE T2 i :

Also, in this case, (5) becomes

f(x)= ? + Yr_y Ay cOSNX + by, sinnx (8)

s

-
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Case (ii)

Suppose a=-1. Then f{x) is defined over the interval (-], 1). Formulae (1),
(2), (3) reduce to

Ay = T j—: f(x)cos ('r:—F) xdx

bu-%f_llf[x}sin($)xdx ol T SORCRG AL )

Then the right-hand side of (5) is the Fourier expansion of f(x) over the
interval (-1, 1).

If we set |=m, then f(x) is defined over the interval (-m, 7). Formulae (9)
reduce to

ﬂu-—-iffpf(x)dx

I

|-

n f_”pf(x) cos nxdx , n=1, 2,

- B R

b,, J'_pp f(x) sin nxdx n=1,2, . ..o ,

Putting ] =m .in (5) , we get

fix)= ? + Xn=1(a, cosnx + b, sinnx)

——_-———-——_———-—__J
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3.3 Examples:-
Example 1:-

Obtain the Fourier expansion of

F[:ﬂ:%Lp—}:} - <x<

Solution: - we have,
I R W )
(L, —;l_r;k )dx —;J_Pg(p—ljdl
1 P
= = [111 .
5p LP ]'—IJ P
. == | E 0 £ A
an ==, _ f(x)cos ﬂlil‘{—pf__ﬂj (p — x) cos nxdx

Here we use integration by parts, so that

[{p - v] sinnxy [ 13( CO3 nx)]_p

s
= —{D] =0
b, =§ s (p — x) Sin nxdx
L (-0 === - (1) (ZF,
:( 1)

T

Using the values ofa, ,a, and by, in Fourier expansion
F (x]— + ¥ apcosnx + Yaq by, sinnx

(-1)"

We get, {(x) =§~ ¥ T

This is the required Fourier expansion of the given function.
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] Integration by parts
Example 2:- o2 cos nmx
Find the Fourier series of \
)
= x2 i sin(nnz)
fix)=x°, =1<%X<1 li .
: |
solution : | 2x
! \ —coiG
j winl
In the example, p=2(period =2) b &
In this case when p=2L | \
: ] —sin(nmx)
Thus in our example L=1 e St PERE

4

1 1 9 1
Qo = — x“dx=-
S J-—l 3

= RGP o =
by, =7J  x*sinnuxdx=0 '8

- L
a, = If—1x cos nmx dx

2x cosnnx| 1

T =
= o[ x*cosnmxdx=——z—|_,

. [{=3)" =k {=1)"]

“znz

4(—-1)"
nznz

Sn F {f} = —+Z *( qus(m)
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Example 3:-
Find the Fourier series of {(x)=x*

Solution :-

Flm—lu cosnnx + b, sinnnx, | =1

, 0<x<]

i
ay = f, x*dx
N lxz 2 8
3]0 3
. L. :
ay = |, x* cos nmxdx
B 3 SN Nnx (
= | X — — (Zx
[ M [: l:]
cos2nm
={eT x|
nént
4(—1)%n
et
ul 4
an = n?

f x? sin nmxdx

2[3(2( r:{::nnr) (2 )(-—

[—+ coszZnm _ 2cosZnm 2cos0
nim némw néné

~4

nmn

_4 4 1.
f (x) +HZEH_1 R COS X — =¥, ~sinnn

COS IUTxX
nén? ) {ZJ(

SinNnmx .
n3d 0

sinnnx COsS N
nem nin? 0

1
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Example 4:-

Find Founer series for the penodie function

_._'—ﬂ,'—ﬂ'!'-.'."x-li'l} d T [
1
Solution:- Ry = ;I-J'_"ﬂf(x)d (
1 g =3 T
= lj'"n f(x)dx + | | {A'Hxl
- ﬁ .J'l ndx 4 J{::' xila '
1 x * ’
= ;l m(x) ”” 1 (){:I
1 [
i UORES
mn
g = —E
1[0 .
Ry = ;[f_n ~1 cos nxdx j“" X COS n:-:dx]

1 sin nx 1 L - !
An = " l'—ﬂ ( n ” Uﬂ * n Ill ("”j."l) i (_ lu;nr)] -
1 0

nt

by = i[f_nn -1 sinnxdx + f; X §in nxdx]

e ) et b (=) - (-5l

e b

e —
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_ 1-2(-1)"

b., =
Wy 0 }_f‘l}“—l 1-2(-1)" . )
f(x)=—+ Xn=1 (ﬂ 5 cosnx + — ——sinnx
=N, ~T<x<0. = o [1{=1"=1 1-2(-1)"
Ve <xcr =3+ o Yomme s =5

Therefore, the Fourier series at x, = 0 converges to,
1
5o — 0) + £ (xo + 0]

f{xg — 0)=lim,,o- f(x) = -7 &

f(xg +0) = lim,_o+ f(x) =0

= :1 —_ — E
- H0) 2( m + 0) <
Thereiore,
Now, take x=0, we get

4 1(=-1)"-1
f{U}__; T E?:‘:l ; 2

_ . AT | (—1)"-1
R

2
n 1 1 1
:,_'_—_+_ — 0
8 12 32 g2 E“*l{zn 1)2
Fd
:‘.—:
8 nl_l{zn_..l}l"

sin nx)
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4. Fourier series for Even & Odd Function
4.1 Definition :-

A function y= f(x) is said to be even, if f (-x) = f(x). The graph of the even
function is always symmetrical about the y-axis. |

A function y= f(x) is said to be odd, if f (-x) = -f{x). The graph of the odd
function is always symmetrical 2bout the origin.

For example, the function f(x) = |x] in [-1 , 1] is even as f{-x)=|—x] = |
|x|=f(x) and the function f(x)=x in [-1,1] is odd as f{-x)= -x = -f{x). The ‘
graphs of these functions are shown below:
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1. If f(x) is even and g(x) is odd, then

e h(x)=f(x) x g(x) 1s odd
¢ h(x)=f(x) x g(x) is evén
e h(x)=g(x) x g(x) 1s even
» for example
& h(1)=I1 cos X 1s even , since both x% and cos x are even functions
e h(x)=xsinx iseven,since x and sinx are odd functions

e .h(x)=x?sinx 1s odd,since even and since x?%is even and Sin x 1s

odd
2. If f(x) is even, then J'_ﬂﬂ f(x)dx = anﬂ f(x)dx
. 8
3. If f(x) 15 odd, then f_ﬂf(x]dx = 0
For example f_ﬂﬂ cos xdx = 2 jﬂﬂ cos xdx ,as cos x 1s even
And fﬂ sinxdx =0, as sinxisodd

In our calculus class, we have studied Taylor series. Using Taylor
series, we approximate functions with polynomials using derivatives at a
specified point. Fourier series provide a function approximation that is
inherently different from Taylor series; they approximate functions using
sines and cosines over an interval. Fourier series were first used in the early
1800s by Joseph Fourier (1768-1830) to describe complicated periodic
phenomena. Since a Fourier series uses only sine and cosines, it always
creates a periodic function as the approximating function. Consequently,
Fourier approximations are often applied to the study of heat flows,
oscillations, vibrations, sound and other wave forms that exhibit
periodicity. Today, processes associated with Fourier series can be used in

speech recognition, music analysis, and in understanding how sound is
affected by transmission through cell phones.
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A Fourier series is an infinite trigonometric series of the form

Which can be written using
summation notation as
F(x)=ay + Y¥-.[a, cos(kx) +

by sin(kx)]
Our goal increasing a Fourier series 1
Is to approximate a given function *
with the Fourier series given above
by choosing appropriate values for
and at nght, we see the 2" order|| =7 2
Fourier approximation (blue) to the
function y=e" Ii(red).

{0 = )

4.2 Fourier Series for Even Functions

Recal! that if it an even function, an even Fourier series. we will denote it
by Fg(X) has only the cosine terms, and can be used to approximate an
even function, so Fg(X) = ag + a, cos(x) + a, cos(2x) + a; cos(3x) +
K. In this section, we will begin by developing an evep Fourier
approximation for some general even function f. Later we wil] expand the
process to produce the general Fourier series for arbitrary functions.

Given an arbitrary even function f on the interval [-m, |, we want to find
the function Fg(X) so that f(x)=Fg(x). this means that f(x)=ay +
ay cos(x) + a, cos(2x) + a; cos(3x) + k and, consequent],

f,,f (x)dx = f_nn g + a, cos(x) + a, cos(2x) + a; cos(3x) + k dx

1. Use the equation above to find the value of (g In terms of fn f(x)dx
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2. Simplify cos(nx + mx) + cos(nx — mx) using the sum and difference
identities  from  trigonometry and use it to  evaluate

fﬂn cos(nx) ms(m;t.:)dx, when m # n and when m=n.

3. Use the result from (2) to find the value of a; in terms of
M cos()f(dx  if [ cos(x)f(x)dx = [T agcos(x) +
a,cos® (x) + a, cos(x) cos(2x) + a; cos(x) cos(3x) + k dx by

Multiplying our onginal function f by cosines, we can find the other
coetficients.

4. Generalize to find the value of a, in terms of f:r cos(nx) f(x)dx 1f

=TT

J_, cos(nx)f(x)dx = j‘_"n ag cos(nx) + a, cos(nx) cos(x) +
a, cos(nx) cos(2x) + cos(nx) cos(3x) + k dx

[t might help to look at n=2 and n=3 first. This result gives us a rule for

finding the coefficients to approximate any even function on the interval
[-7t, ).

N e ' ; -
5. If f(x) =e " on the interval [-m, 7], use an even Fourier series and

numerical integration on your calculator to determine the coefficients
Qp, @y,03,a3,04 andas. Compare the graph of f(x) =e*'to that of your
series Fp(x) = ag + a, cos(x) + a, cos(2x) + k + as cos(5x) on the
mterval [-m, m].

4.3 Fourier Series for Odd Functions

Recall that if it 1s an odd function. An odd Founer series

‘ has only the sine
terms, and can be used to approximate an odd function, so

| 1. Why is there no by terms in the series fo(x)?
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develop a rule for

ose outlined for even functions
the interval

2. Using steps sinular to th |
te any odd function of

finding the coefficients 1O approxima

[-7t, 7]. .
3. If on the interval, use an odd Fourier series and numerical integration on

your calculator to determine the coefficients.

4.4 General Fourier series
ny function. Using

Now we are ready to consider Fourier series for a
ing the coefficients

steps similar to those used above develop a rule for findi

to approximate an arbitrary function f on the interval.
In our prior work, we saw how multiplication by cos(nx) and integrating
generates the equation |

f.ﬁ, cos(nx)f(x)dx = ffn ay cos(nx)+a, cos(nx) cos(x) +
a, cos(nx) cos(2x)+az cos(nx) cos(3x) + k dx

By evaluating the integrals, we eliminate all but one terms m Fg allowing
(=)

L e e d G B B & A O O

us (o find the value of a,in terms of the value of fﬂ cos(nx)(x)dx
: =T :

—-r
i

similarly, we can eliminate all but one term in Fy by multiplying by
sin(nx) and integrating. What we need to consider in the general form 1s
how the sines and cosines interact when we multiply and integrate‘ |

. -

U l:} :
1. What can you say about the value of f i cos(nx) sin(kx) for all n # k?
F K¢

2 Apply your technique to determine the coefficients and if f(x)"" on

thc interval. +e*

3 Compare the graphs of f and F ;
as you inc 8
m the approximation. y rease the number of terms used L
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5. HALF - RANGE FOURIER SERIES

| The Fourier series expansion of the periodic function f(X) of period 21 may
contain both sine and cosine terms. Many a time it is required to obtain the
Fourier expansion of f{x) in the interval (0, 1) which is regarded as half
interval. The definition can be extended to the other half in such a mannet
that the function becomes even or odd. This will result in cosine series or

sine series only.
1) Half range cosine scries in the mterval (0,1).
F(x)= ﬂ; + D=1 [an cos [%)]
Qg = %J;: f{x)dx
a, = %f; f(x)cos (E:—x) dx
2) Half range cosine series in the interval (0,7).

Fix) =% + Y _y Oy COS X
2 oW
g = ;jﬂ f{I]dI

a, = %fﬂn f(x) cos nxdx

3) Half range sine series in the interval (0.1).

£ (x) =3, by sin (?-) dx

2 ¢l . nx
bn — Tfﬂ f{l’} S (“-T) dx'
bt 4) Half range sine series in the interval (0,7).
b F (x) =Yn=1 bn Sin X
2 .
- b, :;j:f(x] sin nxdx |

F(x)=¢(-x) in(-,0).
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Hence f(x) becomes an odd function in (-1,1). The Fourier senes then is
f(x) = Zn=1bn sin( T'I_TE)
Where b, = %fnt f(x) sin(—ﬂ-?i)dx il |

The series (1) is called half — range sine series over (0,1).

Putting 1=r in (1), we obtain the half - range sine series of f(x) o
over (0,m) given by f(x) = X7, b, sinnx

b = % I:rf(;r:) sin nxdx

5.2 Cosine Series:

Let us define |

f(x)=
{f(?f) in(0,1) ...given
f(x) in(={,0) ... inorder to make the function even.

Then the Founer series of {(x) is given by
f(x) = 5* + a1 an coSC -

where, a, = -?— _fc: f(x)dx

[

Gy = %J’ﬂ f(x) ms(-'i?—f) dY i e 2)
The series (2) is called half - range cosine series over (0,1)
Putting 1=m in (2), we get

F (x)=12"- + Yn=1 Gy COSNX

Where, a, = § J’: f(x)dx

,-..ln P
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Up = ijup f(x) cos nx dx n=1,2,3, ..........

5.3 Examples:-

Examplel:-

Expand f(x)= x (r — x) as half-range sine series over the interval (0,7).
So ution: we have,

-y
[

bh,== fﬂp f(x) sin nxdx
I|'_'l

2 rp, 2 .
=t Jﬂ (px — x*°) sin nxdx '
p |

Integrating by parts, we get

b =2 (o7 — 2* (F2E) ~ (- 2) (S5 )

n n?

G 2} (ms n:-:')]g

ne

it (=1)"]

The sine series of f{x) 1s

4

F (x) Z;’le;l%[l = (—1)"] sinnx

Example:-2

Obtain the cosine series of

_x,U-r:x{E

2 over (0,p)

f(x)=
&) p—x,E{x{p

Solution: Here

D
ap =21, "2 xdx + [, (p ~x)dx] =3 *_

LIRS,
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2 e /- 1 H
a. =21 "2 x cos nxdx + [”f (p — x) cos nxdx]
AT /2
Performing integration by parts and simplifying, we get

- - - I f ) L E T —
an = = {1+(=1)" — 2 cos( )] e

Thus. the Fourier cosine series 1s

. 2 .cos?2x cos6x cosl10x
: —_ i = - + - =3 B il
i1 3 = ‘;: 3-‘ g

Example3:-

T+
- " )
e
T
%
)
T
&
]
=
s
T
£
o
)
=1
T
H‘
g
Wl
o
-
G |
oS
p—
—
!
B’

Il
W1
_—
—
5o
=
-

A
=

Solution:

£ _._;_._1{'“;-& P .
— -"'-_I L —li—t:i.j::'- '\-.-L-'-\.' ?I.-l

{
|
|

[}

I'|_
¥

et
| —
=

=—[—cosm+ cos 0]
—£79
| 2 (2

=
o |

1
H |

2o
a, == [, sinxcos nxdx

1 /W .
=— ], 2sinx cos nxdx

wm_

-
» f
- | &
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= i_[: (sin(x + nx) + sin(x — nx))dx

= 2 ([ sin(1 + n)xdx + [ sin(1 — n)xdx}

- et

1 [(~-1}1*"=1 e b L™ | 21 1 1
) ) 1+n =14+n Tin—=1 n+

niseven, n# 1

nisodd, a, =0

2 rFm
= Efﬂ sin 2xdx

b - 3[ cos Er]
T on 2 0
’ 2
1 1
R =0
', mn [E 1]
n ) 2 1 [(-1)1*"-1 -1)1""3
sinx =—+ Eff:z”;; { Lﬂ - _}H“ ]casnx

' fllx)=r—zr+§Zf=34ﬁﬂ["'_11+nil]msnx

’

b |
RN TN TN
3

3

]

4
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| S Euler’s Formulae

L

by
F(x) ={1“/3 + Xneqlay cos nathy, sinnx)

Where,

- ag = L/p [7" F(x)dlx

aQy = 1/:rr f.,H M f(x)cos nxdx

by = 1/11' f:H"J’(I} stn nada

- Where,

The Fourier series for the function ((x) in the interval c=x=ot2n {u given

ag Ay, by These values are known as Euler's Formulae,
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6. Complex Fourier series

F {f} = ay + ) 7-:(a, cosnx + b, sinnx)
| Is called Real Founer senes.

T TR,

The Complex Fourier Senes of f is

defined to be

F (=35 Cre™

Where, ¢, = — [ F(x)e ™ dx
* !
" A . -

Note:-
e =cosx+isinx
—Fr S |
e = (0SX—isinx ]

e — g = Ficin Yy

e +e X =2cosx
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« Remark
en = 52 [T F(x)e™™dx
1.1 pm : .1 R .
= [; Ln f (x) cos nxdx — i _[_ﬂf(x) sinnxdx|

Cn = —la, —ib,), n>0

Bl || i=#

0.1 Examples:

Example 1:-
Write the complex Fourier transform of

F(x)=2sinx — cos 10x

Solution:
Eir_E-u Elnit+e-1uix
F(x)=2 -
[ ) 20 2
_1Eu: 1 L lell}ix ! e —10ix
i i 5
C : C e ; 1
Example:-2

Find the real Fourier series of
F(x) = Ssin x — e™* — je~2X

Solution:

F(x) = 5sin x — cos x — i sin x — i(cos 2x — i sin 2x)

. X . .
i ke o BF D wdbadi W el Y
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4

" Type equation herc Example: - 3 .:
Find the complex Fourier seres of .i! e

Fx)=x, T <x <7 |

Solution: i : {

_ 2 (™ . —inx
Cn = ZH‘LEIE dx

1

z a

=__1_- (_ “Ei—mﬂ i e—inn) N (HE‘[‘.’I# + Elnx)] |

Zn n n’ in n?

[ ye—inx  -inx

in

i _i [_ n-.(_.:[)ﬂ (_.”ﬂ Tf{—l}“ - (_UH] i l

Zm i‘ﬂ n! fﬂ- HI

h |
» —— ("*1)“' o # 0 ' .L g .ﬁ

irn

For n=0
Co =5%fﬂf(;r]dx= g

fﬁxdxo

In
Therefore complex Fourier series is
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6.2 Parseval’s Identity

. M oy

; Parseval’s identity for complex
Founer senes

}J'::I "-‘-1'r-r|ll‘I - ';ﬁr [ﬂHiJr(IJIEdI

Where, |a + ib]? = a* + b* g

13i|2 = |2 + 3i|*

[i| = V02 + 1% =1

Example ]

s ] SE——

P.‘ |r I | ’ i I_jl_:._ {J in 'r
i r - 4 #
} :Ln: J in

Solution:

Let’s apply Parseval 's
(=TT . -
-

::-H:—J":ﬂlz - ?::—m,nxﬁ

1 ’ 1
op - A
i ZJ'I'I::-D},?!ID'_‘E = £ lm=1 nl

e e n*
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Example 2

Evaluate:
ffull —el* 4 3ie"’i"‘ = (1 + i)ebx - ﬂﬂwi}xﬁd#
Solution: |
Let,
F(x)=1— e'* + 3ie*® — (1 + )e®* — cos 4x
Want
[ 1) Pdx = 2n Tie-cltal?

Enn = 1|- cl = _1l E‘ = 3‘£ _EJ -E...ﬁ =_% € -

s . e S '**Tr,r-'

s - o PR W s
[Af@ldx = 2m(1+1+943+5+2)

—
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7. Fourier Transform

- ) i

Let | he defined on (o, v

We delined its Fourier transform by

| I

[ (W) = o [ f(x)a™"*dy

Parseval's Identity

]'“:”[HWJIIHHW [ |/ (x| eda

i

. . it

Fourier Translorm

Example |

Find the Fourier teansform of

. (l: =L <2 €24
F(x) {{J otherwive

Then apply parseval’s identity and see what it gives

Solution:

- |
_
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2
i 2
W) === [ e™*dx
/ V2
_ 1 ( -lm] 2 ) Note here if we are
Ve w Asliod showt
=- _;I_ [e72W — g21W] f(0), we take the limit
WV AT

\

- |IE (S‘Iﬁ 2w
e
Let’s apply parseval’s

re 2 fsm""zw

)dw—f_ dx = 4

—!'.I':IW\_ L_.-I‘.'

1) Let’s play with

J—_U:U_E(ﬂnzzw) G L

w2

. d
2) Let aw=t= dw = ?r

J-c.'u Stl'fl'?['

= gt =7
o t
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i
0 sInet bii
I dt ==

sin?t| oo int t i ;
0 2 _f:“" o dr =" Integration by parts
e

t t .
0

w Sin 2t 3
) dt = oy & e
fu t t 2 sin“t \ t?

-
2sintcost» [ —=

=

W SNy x
fﬂ > dy = 2n

odd

|

4) f:ﬂ;yd:ﬂ =9
uﬁd

Note:-

f Is continuous regardless of f
iy aof () =0

Scanned by CamScanner



Where did these equations come from

7.1 Fourier Sine and Cosine Transforms

/"'

If { is defined on (0, =), we define its

Fourier Cosine Transform by

fcw) = |- ). f(x)coswxdx

JelW) = i— .';_1' Sin wx dx

Recall Founer transiorm

X
"...:_:""_

. f:f(x)mswxdx——J%f;}'(x)sinwxﬁi

vim

il

-———f:f(x)caswxdx

4

'.-.?|

. 8
X

L:f(x) cos wx dx

flw) = ~ [ f(x)[cos wx — i sinwx]dx

0
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Practically
f-(w) = f(w) When fis even.
Sty =Fon) whentisoad

Note that when f is defined on (0,%), we can co:
odd.

Example 1
Find f.(w) and f.(w) for

z, B x<] -
F(x) = {0 , otherwise %

Solution:

f(w) = ‘E J’: f(x) cos wx dx

Il

1 |
J, x cos wx dx

- =)
Using limits
L=
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72 Inverse Fourier Transform

: | h
Fourier Inverse lTransiomnm
|

F(x) =7= [f (w)e™™dw

Fourter Inverse Cosine Transiorm

f(x) J —r ﬂi"l fo(w) cos xw dw

Fourier Inverse Sine Transform

(%) Ji J;;” f;{w) sin xw dw

N

=

FAS} = whif) - \Ef(ﬂ)

FAf )= wk{f)

————————
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Example 1:-
FindF.{e ™} ; F{e™™}
Solution: ‘
F(x) =e™*=f(x) =-e™*

Using the rules
FAFY = whf) ~ 27

N

:”'WFS{_f'} o 'i‘
=wR{f'} - |

Example 2:-

You are given that

Fle™) =
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!
s
l The formula of the Founer Inverse sine Transform
' f{n)-Ef:ﬂ(w)sin:;vdwishucwhmfinwnﬁnmﬂl-
Moreover, recall that f;(w) is computed for odd function f.
If we extend e 10 be odd. we get j
|
~ Not continuous at x=0 when takingf; (w), so we 15¢ i'f ¥ "‘","
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8. Parseval’s Identity

Consider Fourier series and expand it

-

F(x) =ag + 2n=1(a, cos nx + b, sin nx)
=ay + @y cos x + by sinx + dz cos 2x + by sin2x + -
Square 1t
f2(x) = ap? + IN_,(a,? cos®nx + b, sin’nx) + =4
2 0o Y.N_.(a, cosnx + '
bysinnx) + 2a, cosx b, sinx +
2a, cos x Yn-»(a, cosnx + b, sinnx) + -+ {
2ay cos Nxby sin Nx ) I

Integrate

[T F2dx = [ {ag? + SNy (an cosinx + by sin? nx) +
} dx

ﬂj:fi(x)dx = 2nay? + TN, (na,? + anZj e,

/ Parseval’s Identity i3

Standard form

2lapl® + Lo (laa)? + lﬁni'i
General form

2lagl® + Y=y (lan| -+ b D) ==]
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8.1 Examples:- 4
Example 1:-

F {f} =2n=1 s nnsm(ZH 1) where

1:0<x<n
F(X) = {— - <x<0

L.H.S of Parseval’s

& 4 \%\ 16 1
200) +Z51 (0 + (Grsye) ) = 5 L

| R.H.S of parseval's

1 r@ —
—)_ 1dx=2

Therefore,
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Example 3

. e 3
Find =13

Now series 1s given but not f(x).

Solution:

We need f(x) such that

1 1
Qp == orb, = -
1 "n

We attempt with f(x) = x since when integrating by parts,

we get n“in the denominator.

Taking f(x) =x

1 .m
b — I
. | xsinnx dx

1

Llxcosnx| T l= Z[(=1)n 4 (—1)n)

e o

n

Integration by parts ¢

X cos(nmx)

e

l - cos(nx)

\ n

U —y +J‘ "“.S'I'thliﬂxj
n
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Now apply parseva

o 4 _l R .2
E“=1n—2_n-[—ﬁx d}:

Example 4
Evaluate
JFH__‘{Z.smESx — c0s 3x + cos 10x)? dx
Solution:

Let f(x) = 2sin®*3x — cos 3x + cos 10x

Want _Erﬂfz(x)dx

According to parseval’s

fﬂfz(x)dx = n‘[2au3 + Yo i(an? + hnz)}
=m(2(1)* + (-1)°)

=3m
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9. Dirichlet’s Theorem

If f is a nice function, then
_ limyg g, [(x)#limg iy, f(X)
F{f}(xp) = : - &

Suppose that f 1s periodic of period 2 and that f is piecewise
continuous, thatf’_and f' both exist

Example |

Suppose

U T .
nh} _Zn:j T.‘Smﬂl TS XAN

Plug x, =0, 0=10

- Al ST fisd ..
n=1lnedd Sin o " iy

~12-11"r | f(Zn-1)m m
Ty 2O sin (222 ) = 2
- 2

2n-1 2
o0 -2(-1)™"! =
n=1l  op—1 2
o {_1]'1 -t E
n=ton-1 4
Plugxg =7

limgax,~ fO)HIM, & [(X) g
P {f} (xn).: U, sincﬂ Iﬂl 4 - il | = . = ()

Scanned by CamScanner



10. Application of Simple Fourier series

so far, we've covered basic sine and cosine Fourier senes and
its special  cases with variable explained. [n this section, we
are going to understand process of Fourier transform ‘using
actual example.

10.1Examples of Transformation

Let f(x) be a periodic function:

F(."i}= [ﬂ. Lf -RNEx<()

L & ODsx<m

Then find Fourier coefficient and Fouricr series.

First of all we need to gather some inlormaticn before we transform
this piecewise function into Fourier series. Since f(x) ranges over
(—m, ) we assume that period T=2n or L=n which means that
f(x+2m)=f(x).

Now, we know the period we can compute Fourer coefficient which

1sa, and b, where L=m:

an = [, f(x)cos nxj dx
by =+ [, f(x) sin (Fnx) dx
ap =1 [, f(x)dx
Then,ao = - [ f(x)dx
=210 feddx += [ f(x)dx

10 1
=;f_#[ldx+;fu 1dx
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Now, we solve a,,:

= % [“ f(x)cos ( n:r) dx

1 (0 1
= — f_ﬁ Odx + ;f; 1cos(nx)dx
T 1 (siutnx} H]
i3 n 0

—
—

= (sin(nm) — sin(0))

=0, forn=1, 2
Now we solve b,

= % f:_{f(x) sin Gn:r:) dx

- fﬁ Odx + irf; 1sin(nx)dx

B 1 {cos(nx)
=0 -2( ]

— — (cos(nm) - cos(0))

Then,

0, if niseven
D =42 .
o [—, if nisodd
ni

Therefore, ay = 1,a, = 0 and b,, is solved above

Let (t) be Fourier series, f(t) can be written as

f(t ~~Z—“+Eﬁ=1ancns( nt)+z,t_.ib sm( nt)

____—“-m_

-
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"‘% + 32 .04+ Xau1 e sin(nt)

Since we know tha_t b, = 0 when n is even, then
f(t) *-% if niseven

If n is odd then,

f(t) ~= + Loy —sin(nt)

we know that n is odd, then we can write n as n=2k — 1 where
k €z

: - 2 _
f(t) --i- + D=1 o sin((2k — 1))
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1. History:

MNewton and Leibniz quite independently of one another, were largely
responsible for developing the ideas of integral calculus to the point where
hitherto insurmountable problems could be solved by more or less routine
methods. The successful accomplishments of these men were primarily due
to the fact that they were able to fuse together the integral calculus with the
second main branch of calculus, differential calculus.

Isaac Newton Gottfried Leibniz
(1642-1727) (1646 -1716)

The central idea of differential calculus is the notation of derivative. Like the
Integral, the derivative originated from a problem in geometry the problem
finding the tangent line at a point of a curve. Unlike the integral. However, the
derivative evolved very late in the history of mathematics, The concept was
not formulated until early in the 17w century when the French mathematician

Pierre de Fermat, attempted to determine the maxima and minima of certain
special functions.

Pierre De Fermat
(1601-1665)

-
-5 e

Scanned by CamScanner



2. Definition of Derivative:

We begin with a function f defined at least on some open interval (&, D)
on the x-axis. Then we choose a fixed-point x in this interval and introduce the
difference quotient

f(x+ h) —f(x)
h

Where the number h, which may be positive or negative (but not zero), is such
that x + h also lies in (a, b). The numerator of this quotient measures the
change in the function when x changes from x to x + h. The quotient itself is
referred to as the average rate of change of f in the interval joining x to x + h.

Mow we let h approach zero and see what happens to this quotient. If
the quatient approaches some definite value as a limit (which implies that the
limit is the same whether h approaches zero through positive values or
through negative values), then this limit is called the derivative of f at x and Is
denoted by the symbol f ‘(x) (read as “f prime of x"). Thus, the formal definition

of f'(x) may be stated as follows:
DEFINITION OF DERIVATIVE: The derivative f '{x} is defined by the equation

f(x+ h) = f(x
provided the limit exists. The number f '(x) is also called the rate of change of
fat X.

Meaning of derivative: -

o The Derivative is the exact rate at which one quantity changes
with respect to another.

o Geometrically, the derivative is the slope of curve at the point on
the curve.

o The derivative is often called the "instantaneous” rate of change.

o The derivative of a function represents an infinitely small change
the function with respect to one of its variables,

o The Process of finding the derivative is called “differentiation”.
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3. Application of Derivatives in Various Fields/Science such
asin: -

« Biology

» Economics

e Chemistry

* Physics

e Mathematics

e Others (Psychology, sociology & geology)
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4. Application of Derivative in Medical and Biology:

Sometimes we may question ourselves why students in biology or
medical department still have to take mathematics and even physics. After
reading this post, you will understand why.

4.1 Growth Rate of Tumor:

A tumor is an abnormal growth of cells that serves no purpose.
There are certain level of a tumor regarding to its malignancy.

The first level is benign tumor. It does not invade nearby tissue or
spread to other parts of the body the way cancer can. In most cases, the
cutlook with benign tumors is very good. But benign tumors can be serious if
they press on vital structures such as blood vessels or nerves. Therefore,
sometimes they require treatment and other times they do not.

The second level is premalignant or precancerous tumor which is not
yet malignant, but is about to become so.

The last level is malignant tumors. These are cancerous tumors, they
tend to become progressively worse, and can potentially result in death,
Unlike benign tumors, malignant ones grow fast, they are ambitious, they
seek out new territory, and they spread (metastasize).

The abnormal cells that form a malignant tumor multiply at a faster
rate. Experts say that there is no clear dividing line between cancerous,
precancerous and non-cancerous tumaors - sometimes determining which is
which may be arbitrary, especially if the tumor is in the middle of the
spectrum. Some benign tumors eventually become premalignant, and then
malignant.

The rate at which a tumor grows is directly proportional to its volume,
Larger tumors grow faster and smaller tumors grow slower,

The volume of a tumor is found by using the exponential growth model
which is

l‘r{t] = Fﬂ r Ekt

Vo=initial volume
e=exponential growth
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k=growth constant
i ke the
t hmﬂln arder to find the rate of change in turnor growth, you must ta
derivative of the volume equation (V(t))

'r"ft} =WV- gkt

VI(E) = Vo - ek ok

; : i it.
Because eXt is a complicated function, we use chain rule to derivate

y=ekt

Let u = kt

bt |
& ; d_}r =k et
i | dt
T~ From the calculation above, we know that the derivative of et
Erd is k- e*t
_ F'[t}an-k-E"”
=

Because Vit) itself is equal to Vg - e*t we may conclude
Viit)=k-V

# There is the example to prove this theory:

4.2 Larger tumor;

Find the rate of change of a tumor when

its initial volume i 3 wi
a growth constant of 0.075 over a time period of 7 VRars 10 e With

V(E) = V, - ekt
y(?} = 10 % 2,17g(0075)7

V(7) = 15.05em3

Ha NN AN

s

..l'i. Ly

i
E

)

.1..__
1
7
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vy =kv
v'(t) = 0.075 x 15.05

V'(t) = 1.13 em?/year

ith the same
Then let's calculate the rate of change of smaller turmor with t

growth constant and time period.

4.3 Smaller tumor:

Find the rate of change of a tumor when its initial volume is 2 cm? with
a growth constant of 0.075 over a time period of 7 years
F{E} = .["'n i Ekt

V(7) = 2 % 2.178(0075)7
¥(7) = 3.01cm?
Vi) =k-V
V() = 0.075 x 3.01
V'(t) = 0.23cm?year

With this calculation we know how impartant it is to detect a tumor as
soon as possible. It is crucial to give a right treatment that will stop or slow
down the growth of the tumor because bigger tumor intend to grow faster and,
in some case, becoming a cancer that have a small chance to cured.

4.4 Blood Flow:

High blood pressure can affect the ability of the arteries to open and
close. If your blood pressure is too high, the muscles in the artery wall will
respond by pushing back harder. This will make them grow bigger, which
makes your artery walls thicker. Thicker anteries mean that the :

re is less
for the blood to flow through. This will raise your blood pressy space

re even further.

Due to fat and cholesterol plaque that cling to the vessel, it becomes

g
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constricted. If an artery bursts or becomes blocked, the part of the body that
gets its blood from that artery will be starved of the energy and oxygen it needs
and the cells in the affected area will die.

If the burst artery supplies a part of the brain then the result is a stroke.
If the burst artery supplies a part of the heart, then that area of heart muscle
will die, causing a heart attack.

We can calculate the velocity of the blood flow and detect if there are
something wrong with the blood pressure or the biood vessel wall,
In this case, we portrait the blood vessel as a cylindrical tube
with radius R and length L as illustrated below

Because of the friction at the walls of the vessel, the velocity of the
blood is not the same in every point. The velocity of the blood in the center of
the vessel is faster than the flow of the blood near the wall of the vessel. The
velocity Is decreases as the distance of radius from the axis (center of the
vessel) increases until v become 0 at the wall.

The relationship between velocity and radius is given by the law of
laminar flow discovered by the France Physician Jean-Louis- Marie Poiseuille
in 1840, This state that

=
l-"—m{ﬁ' %)

V = initial volume

n= viscosity of the blood

P =Pressure difference between the ends of the blood vesse|
L = length of the blood vessel

R = radius of the blood vessel

r = radius of the specific point inside the blood vessel that we want to know.

To calculate the velocity gradient or the rate of change of the specific
point in the blood vessel we derivate the law of laminar flaw

10
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Example:-

The left radial artery radius is approximately 2.2 mm and the viscosity
of the blood is 0.0027 Ns/m2 The length of this vessel is 20 mm and
pressure differences are 0.05 N. What is the velocity gradient at r = 1 mm
from center of the vessel?

2rP

énL
—2.1x107% % 0.05

T 4x0.0027 x 20 x 10-3
, 104

T 216 % 10-°
V'=—0.46m/s

r

So, we can conclude that the velocity gradient is -0.46 m/s. if the
gradient of velocity is too high then the person may have a constriction in
his/her blood vessel and needs further examination and treatment,

4.5 Population models

The population of a colony of plants, or animals, or bacteria, or humans,

is often described by an equation involving a rate of change (this is called a
“differential equation”). For instance, if there is plenty of food and there are
no predators, the population will grow in proportion to how many are already

there:

11
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Where r is constant. It's not hard to check that the function p(t) = poe”

pu = EB, r= D.ES
Satisfies this differential equation, where po Is the starting population.
Colonies tend to grow exponential until they run out of space food or run into
predators.

When there are limits on the food supply, the population is often
governed by the logistic

EQUATION: -

Where ¢ and L are constant. The population grows exponentially for a while,
and then levels off at a horizontal asymptote of L

12
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The logistic equation also governs the growth of epidemics, as well as
for the example, the frequency of certain genes in a population.

13
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5. Application of Derivative to Business and Economics:

In recent years, economic decision making has become more and more
mathematically oriented. Faced with huge masses of statistical data,
depending on hundreds or even thousands of different variables, business
analysts and economists have increasingly turned to mathematical methods
to help them describe what is happening, predict the effects of various policy
alternatives, and choose reasonable courses of action from the myriad of
possibilities. Among the mathematical methods employed is calculus. In this
section we illustrate just a few of the many applications of calculus to
business and economics. All our applications will center on what economists
call the theory of the firm. In other words, we study the activity of a business
(or possibly a whole industry) and restrict our analysis to a time period during
which background conditions (such as supplies of raw materials, wage rates,
and taxes) are fairly constant. We then show how derivatives can help the
management of such a firm make vital production decisions.

y = c(x)

Ty
Production Level

Management, whether or not it knows calculus, utilizes many functions
of the sort we have been considering. Examples of such functions are

C{x) = cost of producing x units of the product,
R(x) = revenue generated by selling x units of the product,
P(x) = R(x) = C(x) = the profit (or loss) generated by producing and

selling x
units of the product.) ( E

Mote that the functions C(x), R(x), and P{x) are often d

: efined only for
non-negative integers, thatis, forx=0,1, 2, 3, The reason y 10

is that it does

14
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~ot make sense to speak about the cost of producing it Gr?l;:];;*;‘;ﬂﬂse o
generated by selling 3.62 refrigerators. Thus, each functio s
a set of discrete points on a graph, as in Figure. In 51:.;11 r}ln.?gght tﬁzapc:ints anci

i ve
however, economists usually draw & smumhl cu Sk
i sive x. Of course, we must one

assume that C(x) is actually defined for all posi urs
interpret answers to problems in light of the fact that x Is, 0 most cases, a

nonnegative integer.

C(x), has a smooth

Cost Functions: If we assume that & cost function, pi

graph as in Figure, we can use the tools of calculus to study it. A typical
function is analyzed in Example 1.

5.1 Marginal Cost Analysis:

EXAMPLE:1:-
Suppose that the cost function for a manufacturer is given by
c(X) = (107%)X? —0.003X? + 5X 4+ 1000 dollars.
a) Describe the behavior of the marginal cost.
b) Sketch the graph of C{x).

SOLUTION:-

The first two derivatives of C{x) are given by

C'(X)=(3x10"%)X% - 0.006X + 5
C"(X) = (6 x1075)X — 0.006

Let us sketch the marginal cost C'(x) first. From the behavior of C'(x),
we will be able to graph Cix). The marginal cost functiony = (3 x 10-%)x2 —
0.006X + 5 has as its graph a parabola that opens upward. Since y =
C"(X) = 0.000006(X — 1000), we see that the parabola has a horizontal

tangent at X = 1000 So, the minimum value of C'ix)occursat X = 1000.The
corresponding y-coordinate is :

(3107 )(1000)* — 0,006 X (1000) +5 =3 - g4+ 5 = 2
The graph of y = C'(x) Is shown in Fi

marginal cost decreases. It reaches a minim
and increases thereafter, This answers part

Eure. Consequently, at first, the
um of 2 at production level 1000
(a). Let us now Eraph C(x). Since

15
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the graph shown in Figure Is the graph of the derivative of C(x), we see that
C'(x) is never zero, so there are no relative extreme points. Since C'(x) is
always positive, C(x) is always increasing (as any cost curve should).

Moreover, since C'(x) decreases for x less than 1000 and increases for
X greater than 1000, we see that C{x) is concave down for x less than 1000,
is concave up for x greater than 1000, and has an inflection point at x = 1000.
The graph of C{x) is drawn in Figure. Note that the inflection point of C(x)
occurs at the value of x for which marginal cost is a minimum.

D
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A marginal cost functions.

Actually, most marginal cost functions have the same Eeneral shape as
the marginal cost curve of Example 1. For when x is small, production of
additional units is subject o economies of production, which lowers unit
costs. Thus, for x small, marginal cost decreases, However, increased
production eventually leads to overtime, use of less efficient, older plants
and competition for scarce raw materials. As a result, the cost of additiunall
units will increase for very large x. So, we see that C'(x) initially decreases and
then increases,

Revenue Functions In general, a business is concerned not only with its
costs, but also with its revenues. Recall that, If R(x) is the revenue received
from the sale of x units of some commaodity, then the derivative R'(x) is called
the marginal revenue. Economists use this to measure the rate of increase in
revenue per unit increase in sales.
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If x units of a product are sold at a price p per unit, the total
revenue Rix) is given by

Rlx)=x-p

If a firm is small and is in competition with many other companies, its
sales have little effect on the market price. Then, since the price is constant
as far as the one firm is concerned, the marginal revenue R'(x) equals the
price p [that is, R'(x) is the amount that the firm receives from the sale of one
additional unit]. In this case, the revenue function will have a graph Revenue
as in Figure.

. \
g 24
g &
]
x
Quantity X
A revenue curves.

An interesting problem arises when a single firm is the only supplier of
a certain product or service, that is, when the firm has a monopoly
Consumers will buy large amounts of the commodity if the price per unit is
low and less if the price is raised. For each quantity x, let f{x) be the highest
price per unit that can be set to sell all x units to customers. Since sellin
greater quantities requires a lowering of the price, ) will be g decreasing
function. Figure shows a typical demand curve that relates the qu ﬂﬂtig
demanded, x, to the price, p = f(x). ty

17
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Quantity
A demand curves.

The demand eguation p = f(x) determines the_ total revenue
function. If the firm wants to sell x units, the highest price |t_:;alr1 set is f(x)
dollars per unit, and 5o the total revenue from the sale of x units is

R(x) =xp=xf(x) i (1}

The concept of a demand curve applies to an entire industry (with many
producers) as well as to a single monopolistic firm. In this case, many
producers offer the same product for sale. If x denotes the total output of the
industry, f(x) is the market price per unit of output and x fix) is the total
revenue earned from the sale of the x units.

5.2 Maximizing Revenue:

EXAMPLE: 2 The demand equation for a certain productis p = 6 — < dollars
2
Find the level of production that results in maximum revenue.

SOLUTION:
In this case, the revenue function R(x) is

Rix) :xpzx(ﬁ—g)

:t
= 6x e dollars,
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The marginal revenue is given by

R(x)=6-=x
4 (6, 18)
2

8 R(x) = ﬁxuf;—
-
:

- >

Maximizing revenue.

The graph of R(x) is a parahola that opens downward. (see figure) It has
a horizontal tangent precisely at those x for which R'(x) = 0 that is, for those x

at which marginal revenue is Q. The only such x is x = 6. The corresponding
value of revenue is

T
R(x)=66— % = 18 dollars

Thus, the rate of production resulting in maximum re

| | venue is x = 6,
which results in total revenue of 18 dollars,

Profit Functions: Once we know the cost function Cix) and

2 ther
function R(x), we can compute the profit function P(x) from -

P(x) = R(x) — C(x)

Setting Production Levels: Suppose that a firm has C
and revenue function R(x). In a free-enterprise economy
praduction x in such a way as to maximize the profit functio

0st function C(x)

the firm will set
n

P(x) = R(x) - c(x)

139
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other words, since

We have seen that if P{x) has a

P'(X) = R'(X) — C'(X)
R'(a)=C'(a) =10

R'(a) = C'(a)

Thus, profit is maximized at a production level for which marginal
revenue equals marginal cost. (See Figure)

Y _ ¥ =Rix)

a = optimal production
level

-
pril

X

20

maximum at x = &, then P

(a) = DIn

H B .- -
U g
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6. Application of Derivative in Chemistry:

The change in temperature

* An object's temperature over time will approach the temperature of
its surroundings (the medium).

» The greater the difference between the object's temperature and

the medium's temperature, the greater the rate of change of the
object's temperature,

# This change is a form of exponential decay.

L

6.1 Newton's Law of Cooling.

» |tis a direct application for differential equations,
» Formulated by Sir Isaac Newton.

» Has many applications in our everyday life,

» Sir Isaac Newton found this equation beh
called in Math (differential equations
technigues to find its general solution,

aves like what s
) 80 his used some

21
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6.2 Derivation of Newton's Law of Cooling:

» Newton's observations:

rje observed that observed that the temperature of the body is
proportional to the difference between its own temperature and the
temperature of the objects in contact with it.

» Formulating;
First order separable DE
» Applying differential calculus:

ar
m"—'_hl-lr"ir'l

Where k is the positive propontionality constant

» By separation of variables we get
dT
(T —Tg)
» By integrating both sides we get
In(T" —Tg) + C = —kt
# Attime (t=0) the temperature is T,

= —=kdt

C=~In(Ty = Tg)

» By substituting € = =In(Ty, — Tg) we get

C=T) . .

N =T

T=Tg+ (To—Tgle™

22
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6.3 Applications on Newton’s Law of Cooling:

Investigations. Computer manufacturing.
>t can be used to SProcessors.
determine the »Cooling systems.

time of death.

Z»3S0lar water »»Calculating the
Heater. Surface area
Of an object.

6.4 Applications of Newton's Law of Cooling in Investigations
in A Crime Scene:

The police came to a house at 10:22 am were a murder had taken
place. The detective measured the temperature of the victim's body and
found that it was 26.7°C. Then he used a thermostat to measure the
temperature of the room that was found to be 20°C through the last three
days. After an hour he measured the temperature of the body again and found
that the temperature was 25.8°C. Assuming that the body temperature was
normal (37°C), what s the time of death?

23
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T=Tg+(Tg— TE}""_H

Let the time at which the death took place be x hours before

the arrival of the police men.
Substitute by the given values

T(x) = 26.7 = 20 + (37 — 20)e ™
T{x+1)=258=20+ (37— 2()e K+

Solve the 2 equations simultaneously

0394 = ¢~k
0.341 = g~ kix+1)

By taking the logarithmic function
In(0.394) = —kx
In(0.341) = =k(x + 1)

By dividing (1) by (2)
In(0.394)  —kx
In(0.341)  —k{x+1)

0.8657 =
65 r+1

Thus, =7 hours

Therefore, the murder took place 7 hours before the arrival of the
detective which is at 3:23 pm

6.5 Applications of Newton's Law of Cooling in Processor
Manufacturing:

A global company such as Intel is willing to prody

CE 3 new i
system for thelr processors that can cool the processors from 5 temp:?.ailul.a?s
n 24
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of 50°C to 27°C in just half an hour when the tem perature outside is 20°C but
they don't know what kind of materials they should use or what the surface
area and the geometry of the shape are. So, what should they do?

Simply they have to use the general formula of Newton's law of cooling

T=Tg+ (Ty—Tge™
And by substituting the numbers they get
27 = 20 + (50 — 20)e "5k
Solving for k, we get
K=29

50, they need a material with K=2.9 (k is a constant that is related to

the heat capacity, thermodynamics of the material and also the shape and
the geometry of the material)
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7. Application of Derivative in Physics:
Derivatives with respect to time:

In physics, we are often locking at how things change over

time:

1.Velocity is the derivative of position with respect to time:

d
v(t) = —(x(t))

2 Acceleration is the derivative of velocity with respect to time:

d d*
a(t) = E;{l?[t:l] = Eﬁ{x{t}}

3.Momentum (usually denoted p) is mass times velocity, and force (F) is mass
times acceleration, so the derivative of ma mentum is

dp"r.'f o H‘I-’_I T
TR AL e

One of Newton's laws says that for every action there is an equal and
opposite reaction, meaning that if particle 2 puts force F on particle 1, then
particle 1 must put force —F on particle 2. But this means that the (momentum
I5 constant), since

d _dpy dp, _
Lkl S e

This is the law of conservation of momentum,
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Derivatives with Respect to Position:

In physics, we also take derivatives with respect to x.

1. For so called "conservative® forces, there is a function V{x) such that the
force depends only on

position and is minus the derivative of V,
o
namelyF(x) = --%ﬂThe function v(x) is called the potential energy.

For instance, for a mass on a spring the potential energy is %-‘f x* where
kis a constant and the force is ~k x.

2. The kinetic energy Is mv?. Using the chain rule, we find that the total
energy is

di

1 dx
2 = 3 ¥ S == — =
7 (—Emv + l-"{:::]) = mu 7 + V {:L}—-dE =mva—Ffv={ma—-Flv=0

since F=ma. This means that the total energy never changes.

These are just a few of the examples of how derivatives come up in
physics. In fact, most of physics, and especially electromagnetism and

guantum mechanics, s governed by differential equations in several
variables,

7.1 Elasticity of Demand

The elasticity of demand E, is the percentage rate of decrease of
demand per percentage increase in price. We obtain it from the demand
equation according to the following formula:

dg p
E=—-%
dp q

Where the demand equation expresses demand g, as a function of unit =3
p, we say that demand has unit elasticity if E=1.

To find the unit price that maximizes revenue, we EXAALE Bsh
function of p, set E=1, and then solve for p.

27
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Example: -

Suppose that the demand equation g = 20,000 — 2p.

Then E=—-(-2)—2 _—-__F
20,000-2p  10,000-p

If p = 2000, then E = E. and demand is inelasticity at this price.

If p = BOOO, then E = 4, and demand is elasticity at this price.
If p = 5000, then E = 1, and the demand has unit elasticity at this price.

28
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8. Application of Derivative in Mathematics:
Applications of Maxima and Minima: Optimization Problems:

We solve optimization problems of the following form: Find the values
of the unknowns x, y, . . . maximizing (or minimizing) the value of the objective
function f, subject to certain constraints. The constraints are equations and
inequalities relating or restricting the variables x, v, . . ..

To solve such a problem, we use the constraint equations to write all of
the variables in terms of one chosen variable, substitute these into the
objective function f, and then find extrema as above. (We use any constraint
inequalities to determine the domain of the resulting function of one variable.)
Specifically:

1. ldentify the unknown(s):
These are usually the quantities asked for in the problem.

2. |dentify the objective function.
This is the quantity you are asked to mazimize or minimize.

3. |dentify the constraint(s).
These can be equations relating variables or inegualities
axpressing limitations on the values of variables.

4, State the optimization problem.
This will have the form "Maximize [minimize] the objective function
subject to the constraint(s)."

5. Eliminate extra variables.
If the objective function depends on several variables, solve the
constraint equations to express all variables in terms of one particular
variable. Substitute these expressions into the objective function to
rewrite it as a function of a single variable. Substitute the expressions
into any inequality constraints to help determine the domain of the

objective function.
6. Find the absolute maximum (or minimum) of the objective
function.
Example:
Here is a maximization problem: _
Maximize A = x¥ Objective Function
29
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subject to x + 2y = 100,
x = 0, and
y=z10 Constraints

Let us carry out the procedure for solving. Since we already have the
problem stated as an optimization problem, we can start at Step 5.

5.Eliminate extra variables.
We can do this by solving the constraint equation x + 2y = 100 for x

(getting x = 100 — 2y) and substituting in the objective function and the
Inequality involving x:

6.Find the Absolut maximum (or minimum) of the objective function: -
Now, we have to find the maximum value of A = 100y — 2y,

Taking derivative of A with respect to v,

dA

... B - _
rd;—djr(l[lﬂ}? 2y¢) = 100 — 4y

For extreme points,

da _ _

rh 0 100 -4y =0
1040

= y=25

Put value of y in constant x, x + 2y = 100.

x =100 -2y

x = 100 — 2(25)

x = 100-=50

x =50

Thus, extreme point is (50,25).

Maximum value of objective function,

A=xy
A = (50)(25)
4 =1250

Maximum, A = 1250

30
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8.1 Analyzing Graphs:

We can use graphing technology to draw a graph, but we need to use

differential calculus to understand what we are seeing. The most interesting
features of a graph are the following.

Features of a Graph

1. Thex-and y-intercepts: If y = f(x), find the x-intercept(s) by settingy =
0 and solving for x; find the y-intercept by setting x = 0.

2. Relative extrema: Use the processer to find relative extrema and locate
the relative extrema.

3. Points of inflection: Set f"(x) = 0 and solve for x to find candidate
points of inflection.

4. Behavior near points where the function is not defined: If f(x) is not
defined at x, consider Fﬂl f(x)and f:[_‘:'_‘,, f(x)to see how the graph of f

approaches this point.
5. Behavior at infinity: Consider rE@m f(x) and IETM f(x)if appropriate,
to see how the graph of f behaves far to the left and right.

Behavir near Puoimis el
I’ the Tunction s nol delimed

Behaviw al
Infimity

[Hehaiveir al
I famsl
! m -Inlcreepts
8 -imtercopm
@ LExtrema

& Poinlts of Inflection

B o
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To analyze this, we follow the procedure at left:

1. The x and y-intercepts: Setting y = 0 and solving for x gives x =
0. This is the only x-intercept. Setting x = 0 and solving for y
gives y = 0: the y-intercept.

2. Relative extrema: The only extrema are stationary points
found by setting f *(x) = O and solving for %, giving x =0 and x
= - 4, The corresponding points on the graph are the relative
maximum (0, 0) and the relative minimum at (- 4, 8/9),

3. Points of inflection: Solving f "(x) = O analytically is difficult, so
we can solve it numerically (plot the second derivative and
estimate where is crosses the x-axis) and find that the point of
inflection lies at x = - 6.1072,

4. Behavior near points where the function is not defined: The
function is not defined at x = - 1 and x = 2, The limits as x
approaches these values from the left and right can be
inferred from the graph:

32

Scanned by CamScanner



Other Application of Derivatives in Mathematics:

»
>
>
-
¥
>
>
>
b
»
>
¥

Approximation by differentials and newton’s method
Monotonic functions, relative and absolute extrema of functions

Convex functions, inflection points and asymptotes
Curve sketching

L'Hospitals rule and indeterminate forms
Roll's and mean value theorems
Classical inequalities

tangent, normal lines, curvature and radius of curvature
Evaluate and involute

Envelope of a family of curves and osculating curves
related rates

optimization problems in geometry, physics and economics

33
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9 . Application of Derivatives in Psychology:
The application of differential calculus to mental phenomena:

Dr. Montague's it was pointed out that we can get a very
simple expression does faor the 'specious present,’ which was found to

be E‘ if we denote by 0 the objective and by s the subjective

elements of a psychosis. The second derivative would determine the

time flow. Without considering the important philosophical results of the
theory we shall make the following observations about the method.

The author considers the ratio of the increments Ao and As, so which
occur in the time At, and the fraction %55 is supposed to approach or attain the

T | . . T
limit -ﬁ It will be of some interest to see what suppositions this statement

fata)
involves. First of all, it is clear that we have to consider the limité: | because

fal
0 is not an explicit function of 5.

Though we know little or nothing about the sufficient conditions of
differentiability, we can in this case readily indicate the following necessary
conditions: (1) o and s must be continuous: {2} both must have a differential
quotient with regard to t; (3) both differential Guotients must be continuous:

(4)--must not be zero in the whole-time interval under consideration. Itis hard

to make those assumptions, nothin

dealt since s is apparently discontinu
Known tests.

E about the character of the functions
ous in many points submitted to the well-

It is evident that the author had in mind to me
relation to a standard change and so to get
that the conditions of the problem became so much more complicated by the
implicit relation of o and All these tacit presuppositions would have become
Clear if the author had assumed that o is an explicit function of s, but such
but such a relation, of which we can get no idea, would never Haue been
granted. The establishing of the indirect relation between 0 and 8 b
introducing them as functions of time hides the diffic ulty but does not rem mg
it.

An example will show to what kind of conclusions we cg

' % varies with ti :
the author's waw.}-; varies with time and we may pick out

| asure a time period by its
rid duration, but he did not see

me, if we accept
WO moments for

which this ratio has the same value, as it js always possible because

s
ds

o4
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, 3
continuous and :T: changes sign. The conditions of Rolle's theorem are
fulfilled, since continuity of E and existence of the second derivative are
supposed by the author, and therefore, the second derivative vanishes at

r .
least once. The vanishing of :T: is characteristic for the state of ennui and the

first conditions are approximately fulfilled if one sits in @ quiet room and
recalls something. It follows that one must be bored before one can recall
anything. Psychological laws of this kind can be deduced easily by every

mathematician.

There is not the least doubt that the whole theory of functions could be
applied to a psychology of this kind, but the question remains, whether the
conclusions logically deduced from our system admit of a verification by
experiment. If we consider it an important feature of experimental psychology,
that to every implication of our system corresponds an empirical fact and if
possible, vice versa, we must renounce speculations about functions of which

we know nothing.

Now supposing for a moment that there are no gaps and errors in the
author's proof, could we deduce anything from his laws? Of course not. The

o d*o
function is totally unknown and we must measure empirically the value nfﬂ—;

It would be important to know the derivative if we could construct the function
or if we could verify it in some other way, but as we cannot we must con elude
that the use of symbols of which the and the meaning too general is of little
help Finally it may be mentioned that the interesting attempt to measure a
time period by the ratio of a change occurring in it to a standard change also

occurring in it fails, because this ratio is a number which becomes a time only
it. For such a standard we choose a certain

when multiplied by a time uni

amount of change in o, to which we refer as a standard, for instance the
movement of a pendulum. One of the F_Ir'iﬂ{]ip_m features of a standard Is
constancy, and measurement IS rrn[:-usg.lble without it. We have therefore
eithera measurement which varies with time or our whole speculations about

the specious present break down, because the differential quotient of a
constant vanishes gverywhere.

a5
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Some Other Applications of Derivatives:

Derivatives are also use to calculate:

» Rate of heat flow in Geology.
® Rate of improvement of performance in psychology
» Rate of the spread of a rumor in sociology.

s
B
|
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10. Real Life Applications of Derivatives:

10.1 Automobiles:

In an automobile there i always an odometer and a speedometer.
These two gauges work in tandem and allow the driver to determine his speed
and his distance that he has traveled. Electronic versions of these gauges
simply use derivatives to transform the data sent to the electronic
motherboard from the tires to miles per Hour (MPH) and distance (KM).

et Ly
120 1p 7R

10

10.2 Radar Guns:

Keeping with the automobile theme from the previous slide, all police
officers who use radar guns are actually taking advantage of the easy use of
derivatives. When a radar gun is pointed and fired at your care on the highway.
The gun is able to determine the time and distance at which the radar was
able to hit a certain section of your vehicle. With the use of derivative, it is

able to calculate the speed at which the car was going and alsa report the
distance that the car was from the radar gun.

ar
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10.3 Business:

In the business world there are many applications for derivatives. One
of the most important application is when the data has been charted on graph
or data table such as excel. Once it has been input, the data can be graphed
and with the applications of derivatives you can estimate the profit and loss

point for certain ventures.
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